

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and conclu-

sions in this student report.

PRH612 Bacheloroppgave

Development of a camera-based system
for 8-ball using Azure Custom Vision

IA3-6-22

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and conclu-

sions in this student report.

Course: PRH612 Bacheloroppgave

Title: Development of a camera-based system for 8-ball using Azure Custom Vision

This report forms part of the basis for assessing the student’s performance on the course.

Project group: IA6-3-22 Availability: Open

Group participants: Sander Mikal Blomvågnes

Christian Hagrupsen

Amanuel Isak

Supervisor: Hans-Petter Halvorsen

Project partner: Grenland Biljardklubb / Robert Immerstein

Approved for archiving: __

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and conclu-

sions in this student report.

Summary:

In the modern world, the need for digitalization to be included in various spheres of

economic activities is increasingly growing [1]. This is because of the accessibility and

availability that digitalization offers. Even international billiard tournaments and

matches are no exception to this reality [2]. But what about relatively small and local

billiard clubs, where there is activity relating to billiard games and a lack of digitaliza-

tion. Therefore, in collaboration with Grenland Biljardklubb, an initiative to develop a

digital solution for billiard games is embarked upon.

The main goal of this project was to create a camera-based system that is capable of

monitoring and presenting the billiard game, 8-ball. To achieve this goal, a vision system

application and a web application were created. The vision system application was cre-

ated in Visual Studio, by using C#. The vison system is a WinForms desktop application

that utilizes a machine learning model, through the internet to monitor billiard games.

This application includes a GUI for presenting and configuring billiard games as well.

The web application was created by using JavaScript in Visual Studio Code. The web

application is the main approach for users to interact, by utilizing data transactions, with

the vision system. Through the web application, the users are capable of viewing and

configuring billiard games.

The project resulted in a prototype system that fulfills most of its required functionalities.

To further optimize the system, additional development of existing, as well as imple-

mentation of new functionalities will be of the utmost importance.

Preface

4

Preface
This project, and the following report is the result of a bachelor thesis developed by students

at the University of South-Eastern Norway (USN). The group studies Computer Science and

Industrial Automation at the Faculty of Technology, Natural Sciences and Maritime Sciences

at USN campus Porsgrunn.

Thank you to our supervisor Hans-Petter Halvorsen for good communication and guidance

throughout the project. Also, a special thanks to USN for providing a group room for the group,

and to Robert Immerstein and Grenland Biljardklubb for letting us borrow their billiard table.

The cover photo used in this report shows an overview of the system developed in this project.

The vision system application and source code are stored in GitHub - https://github.com/ha-

gru/PoolBachelor/releases/tag/Alpha

Link to web page - https://smartpool.no/

The source code for the web application is stored in GitHub -

 https://github.com/SanderBlom/PoolFrontend

Link to project web page - https://dev.azure.com/BiljardBachelor/Vision%20based%20sys-

tem%20for%208-ball%20pool%20Bachelor

Throughout the project, a variety of different software and services were utilized. These ser-

vices are listed below:

• Adobe Photoshop

• Custom Vision

• PgAdmin

• Draw IO

• Azure Custom Vision

• Azure DevOps

• Digital Ocean virtual machines and networks

• GitHub

• Microsoft Project

• Microsoft Teams

• Microsoft Visio

• Microsoft Word

• Visual Studio

• Visual Studio Code

Upon reading this report, one may find it easier to understand some of the contents if they have

prior knowledge of object-based programming and relational databases.

Porsgrunn, 20.05.2022

https://github.com/hagru/PoolBachelor/releases/tag/Alpha
https://github.com/hagru/PoolBachelor/releases/tag/Alpha
https://smartpool.no/
https://github.com/SanderBlom/PoolFrontend
https://dev.azure.com/BiljardBachelor/Vision%20based%20system%20for%208-ball%20pool%20Bachelor
https://dev.azure.com/BiljardBachelor/Vision%20based%20system%20for%208-ball%20pool%20Bachelor

Nomenclature

5

Nomenclature
API Application Programming Interface

CLI Command Line Interface

CPU Central Processing Unit

DB Database

FAQ Frequently Asked Questions

GB Gigabyte

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ID Identification

IOU Intersection over Union

IP Internet Protocol

mAP Mean Average Precision

NAT Network Address Translation

NI National Instruments

NOK Norwegian Krone

NPM Node Package Manager

NUC Next Unit of Computing

RAM Random Access Memory

SDK Software Development Kit

SLR Single Lens Reflex

SQL Scripted Query Language

TV Television

UI User Interface

USB Universal Serial Bus

USD United States Dollar

USN University of South-Eastern Norway

VDM Vision Development Module

VPN Virtual Private Network

Nomenclature

6

WPF Windows Presentation Foundation

Contents

7

Contents

Preface ... 4

Nomenclature .. 5

Contents .. 7

1 . Introduction .. 10

2 . System description .. 12

3 . Software development plan .. 13

3.1 Scope of the project ... 13
3.2 How will this be achieved .. 13
3.3 Teamwork and development ... 13

4 . Software requirements specification ... 15

4.1 Vision system and GUI ... 15
4.1.1 Vision system ... 15
4.1.2 GUI ... 15

4.2 Web application ... 16

5 . Hardware .. 17

5.1 Camera .. 17
5.1.1 Mobile phone camera .. 17
5.1.2 Logitech StreamCam .. 18
5.1.3 Camera mount ... 20

5.2 Billiard table and balls .. 21
5.3 Computer ... 23
5.4 Final product .. 24

6 . Vision system .. 26

6.1 Evaluated software for object detection and classification .. 27
6.1.1 NI Vision Development Module .. 27
6.1.2 OpenCV Python library ... 27
6.1.3 Azure’s Computer Vision .. 28
6.1.4 Azure Custom Vision .. 28

6.2 Azure Custom Vision .. 28
6.2.1 Technology behind Custom Vision .. 29
6.2.2 Custom Vision UI .. 31
6.2.3 Prediction API .. 39

6.3 Class structure ... 42
6.4 Pool rules ... 44

6.4.1 Main methods to enforce the rules as a digital judge... 46
6.5 Graphical user interface of the vision system ... 47

6.5.1 Ball design ... 48
6.5.2 Cue design.. 49
6.5.3 Game page design ... 49

6.6 Final design .. 50
6.6.1 Live video feed ... 52

Contents

8

6.6.2 Processing .. 52
6.6.3 Timer ... 53

6.7 Simulation mode .. 53

7 . Connection-API ... 54

8 . Database .. 56

8.1 Evaluated databases .. 56
8.2 Database structure... 58

8.2.1 Table overview ... 59

9 . Web Application ... 61

9.1 Libraries and package manager .. 61
9.2 Use case diagram ... 62
9.3 Program structure .. 63
9.4 Web pages and functions ... 64

9.4.1 Front page ... 65
9.4.2 Register page ... 66
9.4.3 Login page ... 67
9.4.4 Profile page ... 67
9.4.5 Create and join games ... 68
9.4.6 Create a tournament .. 70
9.4.7 Previous games .. 71
9.4.8 Administration panel page... 72
9.4.9 Live gameplay page ... 74
9.4.10 Scoreboard page ... 75
9.4.11 FAQ pages ... 75

9.5 Communication and security ... 76
9.5.1 Communication with the vision system .. 76
9.5.2 Communication with clients ... 77
9.5.3 Communication with the database .. 77

10 Testing .. 78

11 Deployment and distribution .. 80

11.1 Deploying the web application ... 80
11.2 Installing the Smart Pool application .. 81

12 Discussion ... 82

12.1 Vision system ... 82
12.1.1 Custom Vision .. 82
12.1.2 Visual system GUI .. 83

12.2 Web application ... 84
12.2.1 Tournament mode ... 84
12.2.2 Creating games and tournaments ... 85
12.2.3 Live streaming ... 85
12.2.4 Connection with the vision systems ... 85

13 Conclusion .. 87

14 References .. 88

Appendices ... 91

Appendix A .. 92

Contents

9

Appendix B ... 94
Appendix C ... 95
Appendix D .. 96
Appendix E ... 97
Appendix F ... 98
Appendix G .. 99
Appendix H .. 101

1 Introduction

10

1 Introduction
Today’s world is always changing. The demand for availability and accessibility is higher than

ever and will continue to grow in the future [1]. International billiard tournaments and matches

can already be followed closely by anyone through television and the internet, but what about

the lower end of the scale? To try and make local billiard events more accessible, the group, in

cooperation with Grenland Biljardklubb, set about to develop a system for 8-ball games for

local billiard clubs. The goal of this project is to create a functional system, that can monitor

and present 8-ball games. The system will provide users with information about games and

players, as well as making it easily accessible and available to follow from different locations

as a spectator. This could lead to a bigger following and increased interest in billiard games in

more local areas, which in return will benefit both supporters and organizers.

To achieve the goal set in this project, a vision system application is created in Visual Studio,

using C#. The vision system is a WinForms desktop application, that receives images of an

ongoing 8-ball game from a camera and utilizes a machine learning model to detect and classify

billiard balls within the images. It will also be able to store and retrieve critical data about the

ongoing games to the cloud-based database, as well as allowing users to follow and configure

an ongoing game on its GUI. The data stored in the cloud-based database, will in return be used

to display games in the web application. The cloud-based database will be created by using

PostgreSQL. The web application is created in Visual Studio Code, by using JavaScript. The

web application is created to provide users with functionalities that are relevant to this project.

The web application and the database are both hosted on DigitalOcean, which is a public cloud

provider. The database is used by both the web application and the vision system application,

to store and retrieve important information. The vision system application and the web appli-

cation will also utilize an API to establish flexible, scalable, and easy communication between

them. The API is called “connection-API” and is created by using Visual Studio.

The scope of this project is the detection and classification of the billiard balls from a still

image of an ongoing 8-ball game, using a computer program. From there, the program will

implement the game rules of 8-ball to gain information about the ongoing game. The presen-

tation of this information will mainly be realized by the use of a web application and a desktop

application. This project is limited to a general description of machine learning models and will

not go in-depth of how the Custom Vision Model is constructed.

The list below will give an overview of the report contents and structure:

• Chapter 2 System description provides a short overview of the developed system

• Chapter 3 Software development plan gives an insight into what will be developed and

how

• Chapter 4 Software requirements specification specifies the requirements for each mod-

ule

• Chapter 5 Hardware discusses physical hardware used in the project

• Chapter 6 Vision system dives deeper into the vision system and its features

• Chapter 7 Connection-API explains the concept behind the connection-API

• Chapter 8 Database delves into the database structure and its features

1 Introduction

11

• Chapter 9 Web application explains the workings of the web page

• Chapter 10 Testing discusses the testing process

• Chapter 11 Deployment and distribution explains how the system can be obtained

• Chapter 12 Discussion

• Chapter 13 Conclusion

• Chapter 14 References

• Appendices

2 System description

12

2 System description
The system is mainly comprised of a vision system that monitors a game of 8-ball, a popular

billiard-game. The vision system is created as a WinForms desktop application, that is installed

on a NUC computer. The application uses a camera to capture the game of 8-ball. The camera

will be mounted appropriately over a billiard table. The vision system uses a machine learning

model to classify and detect the billiard balls within images captured from the camera. This

machine learning model will be developed by using the Custom Vision UI. Once the model is

developed, a prediction-API will be published. It is through the prediction-API that the vision

system interacts with the model. Onwards, the vision system will interpret the game by apply-

ing the game rules. The vision system will use a modified version of the game rules for 8-ball

to analyse the game progression and outcome. Following this task, the vision system will store

and retrieve data about the game in a database. For the purpose of displaying an ongoing game

locally, meaning physically near the billiard table, a GUI is created. In addition to showing a

live stream of an ongoing game, the GUI will also show an updated scoreboard of the game.

The web-application is a platform that allows client devices to configure games and tourna-

ments. It also allows users to view player-details and monitor ongoing games remotely. The

web-application will store and retrieve data from a database, and exchange data with the vision

system through an API. The database and the web-application will be hosted on DigitalOcean.

Figure 2-1 illustrates how the overall system is constructed.

Figure 2-1: Overall system sketch of the vision system

3 Software development plan

13

3 Software development plan
In order to get a grasp of the project in hand, a short Software Development Plan is important.

The plan lists the goal of the project, how to achieve it, and what measures is to be taken to

keep track of the progress. Moreover, the relationships and teamwork within the group needs

to be taken care of to achieve the best result possible.

3.1 Scope of the project

The broad scope of the project is to develop a vision system that tracks and displays information

about a game of 8-ball. In more detail, the main task of this project is to detect billiard balls

from a still image and determine exactly which ball is present on the table. Following this, the

group will make a set of applications that take advantage of and showcases the modern tech-

nology of a machine learning model.

3.2 How will this be achieved

To achieve this, a main vision module will be set up to interpret an image of an ongoing game.

There will be mounted a camera above the table to gain a good view of the table itself. A new

picture will be sent to the system continuously, and it will be trained to recognize the wide

variety of balls on the table. Data accumulated from the vision system, such as the position of

the balls, as well as if the ball is even on the table, will be sent to a database, where it can be

used by the web application. Because of this, there must be a connection between the applica-

tion and the database.

Through the web application, one should be able to register and / or log in to an existing user.

The users should be able to select an ongoing game, and get information, such as who’s playing,

whose turn it is, statistics, and even arrange tournaments or games from anywhere in the world.

The vision system should display information locally about the current game and it should be

easy to understand for both players and spectators.

Further into the report, the reader will get a better overview of the applications and their fea-

tures.

3.3 Teamwork and development

Good teamwork and structure are important to get the best result possible. Azure DevOps is a

phenomenal tool for project planning. A project is set up in Azure DevOps, and tasks are added

to a task board in the beginning of each sprint, which lasts 1-2 weeks, depending on the amount

of work that needs to be done. The group is using scrum as a framework for developing and

working together on the project, giving a good environment for teamwork and structure. As

well as making teamwork easier, it also allows for each group member to be in charge of their

own parts, while keeping close touch with the other members through scrum meetings and

continuous talks about progress, problems, or discussions [3]. Azure DevOps is integrated in

Microsoft Teams, which is the group’s preferred way of storing and working together simulta-

neously on documents such as this report. GitHub will be used to store the source code and

work together on the development of the applications.

3 Software development plan

14

The overall schedule for this project is January 10th through May 20th, which is the deadline

day for this project. Development should therefore be done in good time ahead of this deadline,

and the report should be continuously updated throughout the entirety of the duration.

In relation to development, everything should be planned carefully, and it will be important to

take one task, or add one feature at a time. That way, as the time to develop a fully operational

system is short, even if the group doesn’t have time to implement every feature, the ones that

have been added will work, and the base of the whole project will be solid. Programming lan-

guages used in this project will primarily be C#, HTML, JavaScript, and SQL. CamelCase

notation will be used for methods and variables across the entirety of the coded product.

As stated above, the project is divided into two main parts. The vision system and the web

application. The vision system is the basis of the project, while the main purpose of the web

application is to allow people to configure games, but it will also include other features. Game

viewing, tournament configuration and player stat viewing will be among these features. These

two applications will run in harmony together and are both dependant of each other in certain

ways.

4 Software requirements specification

15

4 Software requirements specification
Before the development process could start, the software requirements had to be determined

and discussed. Figure 2-1 above shows an illustration of various parts that collaborate to create

a system that tracks a game of 8-ball. Two of the most important collaborating parts are the

vision system and the web application. This chapter will describe their functional requirements

in detail.

4.1 Vision system and GUI

One of the fundamental parts of the system is the vision system. The vision system consists of

a program responsible for making predictions by utilizing the Custom Vision model, as well as

keeping track of the game and the game rules. Working together with the graphical interface,

it also works as a display for the system.

4.1.1 Vision system

This subchapter presents the functionalities that the vision system must establish, for the system

to operate accordingly. This means that the vision system will not function accordingly, and

subsequently the web application will not be fully functional if these requirements are not ful-

filled. The functionalities are listed below.

• Receive images and a live video feed of ongoing game from the camera

• Ball detection and classification by utilizing Azure’s Custom Vision

• Interpret games by implementing game rules of 8-ball.

• Update, store and retrieve data of ongoing game from database

• Retrieve and send data to the connection-API.

• Transfer data and a live video feed of the ongoing game to the GUI

4.1.2 GUI

The GUI should be a viewer friendly application that can be displayed on screens around the

pool table to display information about the ongoing game. Included as the most important fea-

tures is a timer to show the full duration of the specific game. On the more technical side, the

GUI shows a live video feed from a bird’s eye perspective, allowing on site spectators a better

look at the current situation on the table. To assist the players, the on-screen display should

show how many, and which balls remains to be pocketed for each player. It should also be

possible to easily see whose turn it is, the name of the players, showing who’s playing whole

and who’s playing half balls.

• Show live video of ongoing game

• Show scoreboard

• Indicate whose turn it is

• Instruct the vision system to activate next play

• Display which balls remains to be pocketed for each player

• Show duration of the game

4 Software requirements specification

16

4.2 Web application

The web application will be the main application that the users directly interact with. The ap-

plication must work just as great on a computer as on a phone or a tablet. The UI should be

minimalistic, easy to understand and navigate. When entering the website, the user must im-

mediately understand how start playing.

The system has a hard requirement, that all users who wants to use the system must be regis-

tered with an account or sign up for one. The billiard tables will still be usable but without the

data acquisition.

The web applications requirements are listed below.

• Users should be able to register an account.

• Users should be able to sign into their account and be presented with their own

personal page.

• Users should be able to see statistics about their previous games.

• Users should be able to see a playthrough if their games.

• Users should be able to start a regular game or a tournament.

• Users should be able to cancel a game or leave a tournament.

• Everyone on the page should be able to see the game rules (including the ones

without an account).

5 Hardware

17

5 Hardware
In this chapter about hardware, the physical equipment that have been tested will be listed with

some information about the results. Throughout the project, and especially the testing stages, a

lot of equipment have been put to the test to see what works best. Availability, compatibility,

and affordability are three keywords that have been given a lot of weight, especially with a

good result in mind. Billiard tables and equipment as far as billiard is considered have been

limited, but every other aspect have been going through a lot of changes and trials to achieve

the best finished product as possible within achievable reason and time frame. As Figure 2-1

shows, a pool table, a camera and a computer are the minimum requirements for the system to

work as intended. The camera will also need to be mounted in a stationary place above the

table. These aspects will be covered more in this chapter.

5.1 Camera

During the early stages, a variety of cameras were evaluated to get an indication on what works

best for this project. With quality for a relatively cheap price in focus, everything that was

available got put to the test. The results vary a lot, so it is important that the solution is relatively

affordable and delivers a good and reliable output for the viewing pleasure of the spectators.

The camera, which can be anything from a simple web camera to a professional SLR camera,

needs to be mounted above the table. Preferably the camera should only capture the playing

area of the table. Starting with various available mobile phones, moving on to web cameras

with different software options, as well as having an expensive SLR camera available if needed.

5.1.1 Mobile phone camera

Mobile phones were available and came in handy while testing the vision systems. Picture

samples were gathered by using both an iPhone 8 and an iPhone 13 Pro Max. While the camera

on the 13 Pro Max were considerably better, the results didn’t vary that much during testing.

Figure 5-1 below shows a picture from an iPhone 13 Pro Max, and the result is pretty good.

The quality is top notch, and the colours look crisp and clean, just like in real life. For usage

with a finished project, the phones are not a viable option, as it is preferred to have a set camera

always mounted above the tables for simplicity, cost, and other reasons like the players being

required to bring their own phones. Phones therefore turned out to be a useful tool for testing

and early-stage vision system training, but not viable as a final solution.

5 Hardware

18

Figure 5-1: Image taken with an iPhone 13 Pro Max

5.1.2 Logitech StreamCam

As the testing went along, the option to use a web camera presented itself. The Logitech

StreamCam is a high end, quality web camera, and seemed like a good alternative for the task

at hand. In Figure 5-2 below, there is a picture of the Logitech StreamCam that has been tested.

The camera itself is a so-called plug and play camera, which means it doesn’t require any ad-

ditional software. After some testing, it became clear that extra software existed, and was very

much a requirement in order to achieve a good result. The addition of extra software will be

discussed further later in this subchapter. The cable connected to the camera is a USB-C cable,

however, it is a little short for easy use being mounted in the ceiling above the pool table. A

USB-C extension cable is therefore something that needs to be added to the final solution.

Figure 5-2: Logitech StreamCam, similar to the one tested and used in this project [4]

5 Hardware

19

During testing in a group room, the camera looked really promising. Everything was high qual-

ity, and the autofocus worked very well. However, in the room where the pool table is stationed,

the lighting is not the best, so without the option to manually adjust focus or any other settings,

the outcoming result was mediocre at best. The result without adding custom camera settings

can be seen in Figure 5-3 below.

Figure 5-3: Picture taken during testing of Logitech StreamCam without custom settings

From the picture above, it’s clear that the quality is not very good. The image looks washed

out, and the lighter the colour of the ball, the whiter the ball looks, which for example makes

the yellow and orange balls look completely white. This is a big issue if the system can’t de-

termine what colour the ball is. The format and resolution that the camera uses to capture an

image also needs to be altered to fit the whole table. To give a good example of the poor con-

ditions with lighting and how it reflects and looks to the camera, one can look at the figure

above. Focusing on the orange ball near the lower centre of the image, even the human eye

struggle to determine if it is an orange ball, and furthermore, if it’s a solid or half ball. The cost

and quality of the camera in environments where the light is good make this camera an option.

However, in the environment where the system is being developed and tested, it seems like a

poor choice without extra software to adjust focus, white balance, sharpness, and other neces-

sary options.

Looking at the results above, it is obvious that without some extra help from software to adjust

settings, this camera would not be a viable option. A camera settings menu was added to the

project. This menu lets the user set up and adjust settings to their liking and helps massively in

this case. Logitech StreamCam has a built in autofocus function, which worked flawless in a

well-lit environment, even at longer distances. However, the autofocus struggled a lot with

focusing, and most of all keeping focus on the pool table and the balls spread across it. The

settings menu lets the user turn off this autofocus feature and adjust the focus, as well as white

balance, sharpness, contrast, brightness, colour saturation, and more to customize and adjust

the quality of the video in real time. Another great feature is the ability to scale the image,

5 Hardware

20

making sure the pool table covers the entire frame, which in turn for example makes the ball

positions more accurate for drawing in the web application further along the process, among

other things. It is important to mention that this settings menu is not developed during this

project but is a part of Advanced Camera Settings in Windows. This camera settings menu is

implemented through a few files that includes command lines to launch this particular settings

menu for the selected camera. An overview of this settings menu and its recommended settings

can be seen in Appendix B.

After a lot of adjustments and testing to find a good balance, the result compared to the picture

without custom settings is night and day. This is displayed in Figure 5-4 below, the picture

looks colourful, sharp, and high definition. The balls are easily distinguishable, especially to

the human eye. Yellow no longer looks white, but yellow, like it is supposed to. Furthermore,

the model must be trained using a wide variety of images. Of course, the model can be trained

to recognize balls in each different table, where the lighting and software adjustments might be

different. Training with different environments proved difficult with the resources available

during the project. However, after testing a few different options, this is the camera and con-

figuration that will be used for further development of the finished product.

Figure 5-4: Result after adjustments through third-party software

5.1.3 Camera mount

To achieve a bird’s-eye view of the pool table, the camera needs to be mounted in the ceiling,

or in another overhanging structure above the table. The Logitech StreamCam comes equipped

with a camera mount right out of the box. As one can see in Figure 5-5 below, the mount is

solid and flexible, giving it a lot of options for adjustment. In this project, where the options

for mounting above the table is limited, it has been mounted into a panel in the ceiling, giving

it just about enough space to cover the whole table. Considering the focal length of 3,2

5 Hardware

21

millimetres that the web camera has to offer, the field of view is good. There’s no option to

mount a different lens to the camera. To cover the entire 180-centimetre-long table used in this

project, it must be mounted about 150 centimetres above the table. Consequently, it must be

mounted even further above the table if it is of a bigger size. When mounting the camera, it

must be kept in mind that there needs to be a physical connection through a cable between the

camera and a computer. The cable from the camera itself is not too long, so an extender will

have to be considered for a clean and comfortable setup.

Figure 5-5: Logitech StreamCam mounted on the camera mount [5]

5.2 Billiard table and balls

The billiard table that has been used during the development of the software has been a standard

small 6 by 3 foot, or about 180 by 90 centimetres table with a blue cloth, just like the one in

Figure 5-6 below. This type of table is not the most common around billiard clubs and other

public places. For playing at home, this type of table makes the most sense, as it occupies less

space, it is easier to move around, and cost less compared to a bigger table of higher quality.

However, as they are less sturdy, they are more prone to damage, defects and other factors that

could cause problems that would not be acceptable at a higher level of play. The table used in

this project had bends around the centre holes, making balls in their vicinity change direction

and roll into the holes without necessarily being hit in that direction. Adding to this, the legs of

the table were not the most solid ones, making the table very sensitive to contact, meaning a

ball right on the edge of the hole could easily be put in by giving the table a little wiggle.

5 Hardware

22

Figure 5-6: Pool table and equipment identical to the one used in this project [6]

The most common table in professional and recreational play outside the home is 9 by 4,5-foot

tables. This is the standard regulation size. However, there are a lot of variations, as shown in

Table 5-1 below, such as 7 and 8-foot tables that are also widely used, especially in venues like

bowling alleys, bars or similar venues that find it beneficial to fit more tables in a limited space.

They are built for that kind of environment and are more solid than the smaller tables. Standard

8-ball pool balls with the traditional colours were what the group had available. Consisting of

16 balls, 7 half, 7 solid, one black and the white cue ball, this is the most used ball configuration

around the world.

Table 5-1: Different sizes of standard pool tables [7]

Table Usage
Size in inches (length

x width)

Size in centimetres (length x

width)

6-ft
Small home table

 (Used in this project)
70-74” x 35-37” 178-188cm x 89-94cm

7-ft Bar table 74-78” x 37-39” 188-198cm x 94-99cm

7-ft+ Large bar table 78-82” x 39-41” 198-208cm x 99-104cm

8-ft Typical home table 88” x 44” 224cm x 112cm

5 Hardware

23

8-ft+ Professional 8ft table 92” x 46” 234cm x 117cm

9-ft Standard regulation size 100” x 50” 254cm x 127cm

10-ft Oversized 112” x 56” 285cm x 142cm

12-ft Snooker 140” x 70” 357cm x 178cm

As seen in Table 5-1, there are a handful of options. The table used in this project is the 6-ft

table with a blue cloth. To support other types of tables like 6-foot tables with green or red

cloths, or bigger tables like 9-foot tables, it is possible that the model would have to be trained

and adjusted to the new colours. Size wise, there shouldn’t be much of a problem if the camera

captures the whole table, but the colour of the cloth, and the resulting reflection on the balls

could have an impact. This has not been tested, and it is not clear whether this would affect the

model and its accuracy to the point where it is straight up unreliable. This is because of the

limited resources that were available.

5.3 Computer

The vision system application is based on Microsoft’s WinForms, and the connection-API is

based on web API. Therefore, the software will only run natively on a Windows platform.

Windows 10 or 11 will therefore be a hard requirement for the software to run as intended.

Other hard requirements would be USB 3.0 input, .NET 4 and 6 runtimes installed, HDMI out

and enough processing power and ram to run the application. During testing, 4GB of RAM on

a newer 2 core processor was found to be the minimum requirements for the application to run

smoothly.

Table 5-2: Evaluated computers

Name Price NOK
Power con-

sumption
Operating system Size in litres

HP 260 G4 5500+ 5 – 35W Windows 1

Intel NUC

BXNUC10I3FNH2
5500+ 5.5W – 25W Windows 0,7

Lenovo

Thinkcentre

M710q (Used)

3000+ 10 – 50W Windows 1.1

HP EliteDesk 800

G1 (Used)
2500+ 8 – 50W Windows 1.1

Lenovo Thinkpad

L440 (Used)
2000 9 – 37W Windows 2.38

5 Hardware

24

In Table 5-2 one can see an overview of computers that have been evaluated as candidates for

the vision system. Ideally, a small, low power and inexpensive computer that could be mounted

behind a TV or placed in a location out of view to run the software is preferred. Because of

these soft requirements, both new and used hardware have been evaluated.

5.4 Final product

As stated in the beginning of this chapter, the group had different options regarding pretty much

every aspect of the hardware side of the project. When it comes to the of the size of the billiard

table, it will most likely not have an impact on the rest of the system, other than how far above

the table the camera needs to be mounted. The Logitech StreamCam and the included camera

mount has turned out to be a very good option, as it was light weight, inexpensive, and easy to

set up. The price of the camera is about 1000 NOK and including an extension cable that is

most likely needed, the total camera cost would be about 1200 NOK at the time of writing this

report.

A billiard table may be the most expensive part of the system, but the price of this has not been

taken into consideration, since this is something that is expected that the costumer already

owns.

To run the application, a computer is needed. Multiple computers have been used during testing

and development, both older and newer models. At the end of the project the group was pro-

vided with an older Intel NUC computer for use during testing of the system. Even though the

NUC was released in 2015, it could run the required software without any significant issues.

Newer versions of NUC are available for about 5500 NOK.

The fourth part needed for the system is an external monitor or TV that can display the vision

system GUI in native 1920x1080 resolution or higher. The size of the monitor should be 50

inches or bigger. The further away the audience are sitting, the bigger monitor is needed. Dur-

ing the development, a 55-inch monitor has been used.

The last hardware needed is the mouse, keyboard, and necessary cables. An USB-C extension

cable for the webcam is most certainly needed because of its short length. A wireless keyboard

with a touchpad would be preferred over a wired one.

Looking at the hardware, which often can be biggest capital expense, the system is relatively

inexpensive. There is more expensive hardware that could improve the look, finish, and per-

formance of the system, but the gains are miniscule, and it will push up the overall cost up as

well.

5 Hardware

25

Table 5-3 provides an overview of the required hardware and an estimated price for all the

hardware needed for one table.

Table 5-3: Estimated cost of required hardware

Product Estimated Price Description

Web camera 1000 NOK Logitech StreamCam

Computer 5000 NOK
Mini desktop with i3

processor and 8GB RAM

Monitor 5000 NOK Monitor with 55 inches

Cables 500 NOK HDMI, USB and Power

Wireless mouse and key-

board combo
500 NOK LOGITECH K400

To decrease the price, the costumer can buy the hardware in bulk and or buy refurbished

hardware (used). Buying refurbished hardware can reduce the initial hardware cost and it will

result in less new hardware being produced which can positively impact the environment [8].

This can reduce the carbon footprint of the customer.

6 Vision system

26

6 Vision system
The vision system’s main responsibility is to detect, classify the billiard balls, and interpret the

game of 8-ball, by applying the game rules. It will keep track of the scoreboard and manage

whose turn it is to play. Additionally, it will store data about an ongoing game in the database.

This data can later be used by the web application. The vision system is developed in Visual

Studio as a WinForms application and installed on a NUC. The vision system utilizes Azure’s

Custom Vision for the detection and classification of billiard balls. This operation is achieved

by sending images to an API that Custom Vision provides as part of their service. The vision

system will receive live video and images from the camera. The live video will be transferred

to the vision system GUI, along with data about the ongoing game. The GUI is responsible for

displaying the live video and additional graphical elements. This chapter presents a description

of how the vision system and its GUI is constructed. This description will entail a presentation

of the design-basis and the final design for the GUI. It will also give an evaluation of various

object detection and classification software, an overview of the technology behind Custom

Vision, and how Custom Vision is used in the project. Additionally, this chapter will go through

the structure of the vision system and give a description of how the game-rules are applied. An

overview of the vision system is illustrated in Figure 6-1.

Figure 6-1: An overview of the vision system

6 Vision system

27

6.1 Evaluated software for object detection and classification

One of the requirements of the vision system, is the detection and classification of billiard balls

through an image. This subchapter will describe and specify the evaluated software, for the

object detection and classification part of the system. Table 6-1 presents a list of various spec-

ifications of the different software that were evaluated.

Table 6-1: List of evaluated software

6.1.1 NI Vision Development Module

The NI Vision Development Module is relatively expensive. It consists of a development mod-

ule, a deployment module, and a debug module. The development module will cost approxi-

mately 23 500 NOK to license per year, while the deployment module will cost approximately

5 500 NOK for a yearly licence. At last, the debug module will cost approximately 14 500

NOK to license each year. The VDM can be developed using programming languages such as

LabVIEW, C, C++, or C#. The group decided that using the VDM for tracking a game of 8-

ball pool would not be feasible. The group’s reasoning for this decision, is manly the cost of

the license and the group’s lack of knowledge in LabVIEW programming [9].

6.1.2 OpenCV Python library

OpenCV is open source and free to use. The service can only be utilized by using python and

it is rather difficult and time consuming to implement to the larger system. The applications

that utilize OpenCV can run on any system that supports Python 3. The group decided that,

Name Cost Languages Supported OS’s

NI Vision

Development Module
Expensive

LabVIEW, C,

C++, and C#
Windows, Linux

Python's OpenCV

libraries
Free Python Windows, Linux, macOS

Azure’s Computer

Vision
Free

C#, python, Java

and GO
Windows, Linux, macOS

Azure Custom Vision
Free or

inexpensive

C#, python, Java

and GO
Windows, Linux, macOS

6 Vision system

28

because of the group’s lack of experience with python programming, would not be a good

choice in this insistence [10].

6.1.3 Azure’s Computer Vision

Azure’s Computer Vision is a free service. This service can be utilized by using C#, Python,

Java or GO. The application that incorporates the library can run on Windows, Linux or ma-

cOS. The group decided not to pursue this option. This decision was made because the group

discovered another service, that offered more flexibility. The other option is Azures Custom

Vision [11].

6.1.4 Azure Custom Vision

Azure’s Custom Vision has both a free and a paid version. The paid version is significantly

cheaper than the option form NI. The user is only required to pay for the training of the machine

learning model. This will be a onetime fee instead of a subscription-based model. This will be

explained more detailed later in the report. This service can be utilized by using C#, Python,

Java or GO. The application that incorporates this service can run on Windows, Linux, Unix

and macOS. The group decided that Custom Vision would be the best option, because it is

relatively affordable and in comparison, to Azure’s Computer Vision, it offers more flexibility

[12].

6.2 Azure Custom Vision

Custom Vision is the software that is used, to detect and classify billiard balls in the vision

system. This software is a cloud-based SaaS that Azure offers as part of their cognitive services.

Custom Vision empowers developers by offering prebuilt machine learning models. Develop-

ers can then quickly implement the models to develop an application that uses Custom Vision,

without having any prior knowledge on machine learning models [13]. The Custom Vision UI,

which is reached by searching “customvision.ai” on the web [14], is used to create, train, and

publish a model that can detect and classify billiard balls. The vision system uses this model,

through a prediction-API, that is provided by Custom Vision itself. Figure 6-2 illustrates how

the Custom Vision is used. This subchapter will give an overview of the technology behind

Custom Vision, a description of the Custom Vision UI and a description of how the Custom

Vision prediction-API interacts with the vision system.

6 Vision system

29

Figure 6-2: The vision system sends an image of an 8-ball game as a request to the predic-

tion-API and receives data, that includes the names of billiard balls and the corresponding

image-coordinates.

6.2.1 Technology behind Custom Vision

In the section above, Custom Vision was described as a service that offered prebuilt machine

learning models. But more specifically, it is mainly deep learning models that it offers. Deep

learning is a subset of machine learning and machine learning is a subset of artificial intelli-

gence. So before defining deep learning, let’s define what machine learning and artificial in-

telligence are. Artificial intelligence allows machines to learn, sense, reason and adapt, just like

ordinary humans do. On the other hand, machine learning is the method that enables machines

to learn without being programmed through access to data. Deep learning is a method used

within machine learning that utilize neural networks with vast amount of data [13]. Figure 6-3

illustrates the relationship between artificial intelligence, machine learning and deep learning.

6 Vision system

30

Figure 6-3: Relationship between artificial intelligence, machine learning, and deep learning

A common approach to solving the problem of object detection and classification, especially

in recent years, is through deep learning methods. Deep learning methods use multilayered

neural network models to solve the problems specified above. It achieves this by processing

the raw input, for example pixels, through a series of functions. These functions are basically

the” neurons” in the network. Multilayered neural networks are usually comprised of dozens

of these neurons. The neurons are also organized in layers, and the networks will usually in-

clude dozens of layers, hence the terminology “deep”. Each neuron will contain several param-

eters, and modern neural networks will contain millions of parameters. The idea behind these

networks, is to find the optimal parameters of the functions, so that eventually the model can

correctly predict the input data. The parameter-value adjustments are achieved through an ex-

amination of a large amount of data, and gradually correcting itself as it compares the predicted

result with the actual input data [13].

Custom Vision makes use of a deep learning technique called transfer learning. The concept

behind transfer learning is the utility of knowledge gained from solving one problem, to solve

a different but related problem. This can greatly decrease the time and data needed for creating

the models and consequently jump start the process of solving a deep learning problem. It

achieves this by utilizing pre-trained multilayered neural networks. For example, a multi-

layered neural network can be trained on the large dataset of images, with millions of examples.

This network will then have gained the knowledge of how to process images well. This will

entail general knowledge such as how to detect edges, shapes, and patterns to differentiate

between objects. This knowledge, captured within the parameters of the network, can be used

in different kind of scenarios with significantly less data, such as distinguishing between a set

6 Vision system

31

of billiard balls [13]. The latter problem is the focus of this report, and it is through Custom

Vision’s transfer learning abilities that it will be solved.

6.2.2 Custom Vision UI

The Custom Vison UI is a web application that is used to create, train, and publish a model,

that can detect and classify billiard balls. This subchapter will give a closer look into how the

model is created, how the model is trained and how the model is published, using the Custom

Vision UI. Figure 6-4 shows the main page for the Custom Vision UI.

To create the model, Custom Vision UI presents the page shown in Figure 6-5. This page con-

sists of a form intended for creating a model. The top-half of the form includes a textbox for

what the model is called, a textbox for a description of the model and a combo box for selecting

resources. The bottom half includes checkboxes for which function is wanted for the project.

The choice is between classification and object detection. The main difference between these

two options, is that the classification function has the ability of applying labels to objects,

within an image. While the object detection function has the same ability as the classification

function, it will also generate a bounding box that surrounds the object. Therefore, “Object

Detection” will, in this instance, encompass detection and classification. Because of this, the

“Object Detection” alternative is chosen for this model.

Lastly, the bottom half of the form will also include checkboxes intended for choosing a do-

main. These domains optimize the model to detect and classify certain types of datasets. For

example, the “Logo” domain optimizes the model to detect and classify images that contain

logos. As Figure 6-5 demonstrates, the “General [A1]” domain is chosen in this project. The

documentation for Custom Vision suggests that the “General [A1]” domain is optimized for

better accuracy with comparable inference time as General Domain. Furthermore, it is recom-

mended for larger datasets or more difficult user scenarios. It also requires more training time.

The choice was based on the group’s assessment on which domain fitted this specific scenario:

Figure 6-4: Main page for the Custom Vision UI

6 Vision system

32

Detecting and classifying billiard balls [15]. Figure 6-5 shows the implemented information

for this model.

Figure 6-5: Page for creating a model on the Custom Vision UI and subsequently, the page

also shows the implemented information for this particular project.

Now that the model is created, the next step is to train the model. There are two steps needed

to train the model, to detect and classify billiard balls. The first step is to capture images of

billiard balls and import them to the Custom Vision UI. Figure 6-6 shows some of these up-

loaded images. The second step is to specify the objects that are going to be detected and clas-

sified, within the images. This means that a bounding box, surrounding the relevant object,

6 Vision system

33

must be carved out. This can either be done manually, or Custom Vision can generate these

bounding boxes by itself. Each bounding box must also coincide with a tag. A tag is the name

of the object that is surrounded by the bounding box. Figure 6-7 shows an image, where all the

billiard-balls within the image have been tagged. Meaning, they have a bounding box surround-

ing them, as well as the corresponding tag names.

Figure 6-6: Images of billiard-balls on a pool table, uploaded to Custom Vision.

6 Vision system

34

Figure 6-7: Image of Billiard-balls that have been tagged. The white rectangles surrounding

the balls are the bounding boxes and the corresponding tag-names are listed on the right side

of the page.

In total, there were 395 images of billiard balls, uploaded to the Custom Vision UI for training.

These images varied in their visual characteristics. These variations entailed ball-positions,

lighting, camera angels and size. The documentation for Custom Vision recommends these

varieties to the images, such that the model can be trained more effectively. The documentation

also recommends that uploading 50 images per tag, is generally considered a good number of

images to start with. For example, 50 images can be uploaded where the tag “yellow-half” is

included in all of them. Table 6-2 shows the final number of images per tag that were uploaded

and used to train the Custom Vison UI [12].

Table 6-2: Number of images per tag

Tag Number of images

Blue-whole 123

Blue-half 122

Yellow-half 111

Yellow-whole 234

Orange-whole 234

Orange-half 145

6 Vision system

35

Once alle the images have been tagged, the execution of training the model can proceed. The

Custom Vision UI will put forward two alternatives of training the model. These alternatives

are displayed in Figure 6-8 and are based on what kind of subscription that is being used. There

is a free subscription and a standard substruction. Advanced training is available with the stand-

ard subscription and custom vision defines it as the ideal alternative for challenging datasets

and for improved model-performance. Furthermore, as Figure 6-8 illustrates, advanced training

also allows the user to specify the duration of the training. This can be anywhere from 1 to 96

hours. This alternative does come at a cost and the amount of the cost depends on the number

of hours the training duration is set to. It costs 10 USD per hour to train the model. Quick

training is available with the free subscription and Custom Vision describes this alternative as

ideal for quick training-durations and does not offer the user to specify the training-duration

[16]. Table 6-3 shows the final count for the model’s training sessions. As Table 6-3 illustrates,

both quick training and advanced training were utilized. For a more detailed overview of the

training-sessions, see Appendix C.

Purple-whole 121

Purple-half 112

Green-whole 145

Green-half 165

Red-whole 178

Red-half 154

Brown-whole 134

Brown-half 165

White 323

Black 234

6 Vision system

36

Figure 6-8: Pop-up page showing the two alternatives of training the model.

 Table 6-3: General overview of training sessions

 Quick training Advanced training

Number of sessions 8 2

Average training-duration in

hours
1.1 3

After a training session is done, the publishment of the model can take place. This is achieved

by publishing a prediction-API. This is done by using the Custom Vision UI. It is required to

specify the model’s name and the resource that is used. The model-name will later appear as

one of the parameters needed to interact with the prediction-API, from the vision system. Fig-

ure 6-9 shows the model’s name as “BallModel10”. The reasoning behind the number at the

end, is to specify which iteration of the model is being published. This process of uploading

training-images, training and publishing the model is repeated continuously, until the model

works sufficiently.

6 Vision system

37

Figure 6-9: Pop-up page for publishing a model

After every training session, three metrics are going to be shown in the Custom Vision UI.

These metrics can be seen in Figure 6-10. The metrics represent an evaluation of how well the

model is preforming with the training images. More specifically, how well the model is detect-

ing the various billiard balls within the training images. The metrics are titled as precision,

recall, and mAP, or mean average precision.

Figure 6-10: Example of how the Custom Vision UI shows the metrics that represent the per-

formance of the model

6 Vision system

38

Before defining precision, recall or the mean average precision, there needs to be a definition

for what the model considers a correct detection. This can be achieved by using a method called

intersection over union. The basic idea behind using this method, is that producing a correct

detection does not require the predicted detection to 100% match the ground truth. This means

that the predicted bounding box is not required to completely match the bounding box that was

used in the training images. Instead, an IOU-threshold can be set. 𝐼𝑂𝑈 =
𝐷∩𝐺

𝐷∪𝐺
 ∗ 100 (6-1)

shows the equation that is used to calculate the IOU. This equation is used to compare the two

bounding boxes: the predicted bounding box produced by the model, which is defined as “D”

in the equation, and the bounding box that was used in the training images, which is defined as

“G” in the equation. If the result from this equation is over a predefined value, then the pre-

dicted detection is defined as correct. Otherwise, it will be defined as incorrect [17]. The IOU

threshold in this project was set to 30%. This specific threshold was the default threshold that

Custom Vision sets and is only used when training the model.

𝐼𝑂𝑈 =
𝐷∩𝐺

𝐷∪𝐺
 ∗ 100 (6-1)

The precision indicates the ratio between the number of detected balls that were correctly pre-

dicted, to the total number of detected balls within an image. For example, if the model identi-

fied a ball in 100 images as “yellow-half”, and 99 of them were actually “yellow-half” balls,

then the precision would be 99% for the “yellow-half” ball. (6-2) shows the equation that is

used to calculate the precision for one type of billiard ball. The precision shown in Figure 6-10

and Figure 6-11 is the average of the precision from all the billiard balls [18].

The recall indicates the ratio between the number of detected objects, that were correctly pre-

dicted, to the total number of objects within an image. For example, if there were actually 100

images of “red-whole” balls, and the model identified 80 as “red-whole” balls, the recall would

be 80% for the “red-whole” ball. (6-3) shows the equation that is used to find the recall for one

type of billiard ball. The recall shown in Figure 6-10 and Figure 6-11 is the average of the recall

from all the billiard balls [18].

The mean average precision is a metric that encompasses, both precision and recall. It is defined

as the mean, of the average precision of each ball. Average precision is the area under the

precision and recall curve. This curve is generated, when a ball’s precision measurements is

plotted against the recall measurements of the same ball, for each prediction the model makes

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ Detected & correctly predicted balls

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑎𝑙𝑙𝑠
∗ 100 (6-2)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ Detected & correctly predicted balls

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑙𝑙𝑠
∗ 100 (6-3)

6 Vision system

39

across various probability scores. Probability scores are indicators of how confidant the model

is in its predictions. (6-4) shows the equation that is used to find the mean average precision.

The mean average precision is usually used to compere object detection models [17] [18].

𝑚𝐴𝑃 =

∑ 𝐴𝑃𝑖
𝑁
𝑖=1

𝑁
 *100 Where N is the total number of

balls and AP is Average precision

(6-4)

The final result of the model’s performance-metrics is illustrated in Figure 6-11. These metrics

were achieved through the training sessions shown in Table 6-3 using the training-images de-

tailed in Table 6-2 and an IOU threshold of 30%.

6.2.3 Prediction API

The prediction-API allows the vision system to interact with the model and make predictions.

Figure 6-12 shows an illustration of how the vision system interacts with the prediction-API.

There are three alternatives to making a prediction using Custom Vision: The first one is by

using the Custom Vision UI, the second is by using an SDK, and the third is by using a REST

API endpoint. The method that is used in this report, is the one that involves an SDK. SDK

stands for Software Development Kit. It provides developers with the necessary tools to operate

various tasks, in an installable package. The SDK that is in use in this project, is installed in

Visual Studio by using the package manager “NuGet”. The SDK is called “Microsoft.Az-

ure.CognitiveServices.Vision.CustomVision.Prediction”.It gives access to classes and meth-

ods, that can be used to interact with the prediction-API. The “BallDetection” class, illustrated

in Appendix F, is the class that is responsible for executing the process of making a prediction.

The description below, describes how the SDK is used, within the “BallDetection” class, to

Figure 6-11: Final performance-metrics of the model generated by the Custom Vision UI

6 Vision system

40

communicate with the prediction-API. More on the C# classes, including the “BallDetection”

class that build up the vision system application will be detailed in chapter 6.3.

The first step of the process is to specify some important parameters. These parameters are the

prediction-endpoint and the prediction-key. They can be fetched from the Customs Vision UI.

These parameters are then used as input parameters in a method called “PredictionConnection”.

The latter method is part of the installed SDK. This method’s responsibility is to establish a

connection to the prediction-API and will only be executed at program start-up. If the connec-

tion is successful, then the next step of the process can begin. If not, an error will be displayed.

In the next step, some additional input-parameters need to be specified. These parameters are

an image of billiard-balls, the project-ID, and the model-name. Both the project-ID and the

model-name are fetched from the Custom Vision UI, while the image will be sent from the

“GameManager” class or the “Simulation” class. These classes are illustrated in Appendix F.

The parameters will then be used as input-parameters in a method called “DetectImage”. This

method’s responsibility is to request a prediction from the prediction-API. If the request is

processed correctly, the API will send back the result of the prediction. If not, an error will be

displayed.

The results of a prediction include the names of detected billiard balls, the x and y coordinates

of the corresponding billiard balls, and probability values of the corresponding billiard balls.

The x and y coordinate are the coordinate of the upper-left corner of the detected bounding

box. This is shown in Figure 6-14. The probability score shows the level of confidence the

model has in its predictions. The results that “DetectImage” generates are not filtered to only

get the predictions that were made over a certain probability threshold. Therefore, the result

will include all the predictions that the model makes. The only predictions that are relevant to

retrieve in this case, are the correct predictions. To achieve this, there is implemented code that

filters out predictions that have a lower probability value than a certain probability threshold.

This threshold is set to 40%. This is because a 40% threshold provides the optimal result. This

number was found through trial and error. The final result will include the names of the detected

billiard balls and their x and y coordinates. After this data has been processed, the class will

wait for a new image. If a new image is sent, the “DetectImage” method will be executed again.

Figure 6-13 illustrates the process of making a prediction using the vision system.

The number of predictions that a user is allowed to make will be based on the type of subscrip-

tion that is used. With the free subscription, users would be able to make 10,000 predictions

Figure 6-12: Overview of the vision system’s interaction with the prediction-API

6 Vision system

41

per month. But with the standard subscription, users would pay 2 USD for every 1000 predic-

tion they make, without having any kind of limit [16]. In this project, the free subscription was

used to make predictions.

Figure 6-13: Flowchart showing the process of making a prediction

6 Vision system

42

Figure 6-14: Illustration of a detected ball with its bounding box

6.3 Class structure

The vision system is responsible for monitoring a game of 8-ball. It must be able to receive live

video feed and images of a game, from the camera. Furthermore, it must process the images by

utilizing Custom Vision’s prediction-API. It must also receive data from the prediction-API,

interpret the game by applying the game rules, and store and retrieve information about the

game in the database. It is also required to transfer the live video feed to the GUI and wait for

instructions from the GUI. Lastly, it must also be able to communicate with the web application

through the communication-API. Error! Reference source not found. shows an overview of

the tasks described above. To achieve these tasks, the vision system is developed as a Win-

Forms application in Visual Studio. The vision system is mainly constructed by various C#

classes, and it is through these classes that the tasks described above get executed.

6 Vision system

43

The vision system includes 4 concrete classes and 3 Form classes. The 4 concrete classes are

called “Ball”, “Player”, “Game” and “BallDetection”. The Form classes are called “Ga-

meManager”, “Simulation” and “StartPage”. Regarding the naming conventions in the pro-

gram, pascal notation is used for naming classes, methods, and properties. Camel case is used

when naming variables. Figure 6-16 illustrates how the various classes are constructed to exe-

cute the tasks at hand. Appendix F also shows the class diagrams of the concrete classes.

These classes contain methods, properties, and variables that in combination can execute tasks.

The “Ball” and “Player” classes will mainly include properties that act as placeholders for rel-

evant data. The “Game” class will also include some properties, but it will also include logic-

based methods that implement the game-rules. Additionally, this class will be used to store and

retrieve data from the database. The library “NpgSql” is used to make the interaction between

the class and the database possible. “NpgSql” contains various methods and classes that can be

used to store or retrieve data. The “BallDetection” class will include various methods and var-

iables. The main purpose of this class is to generate the coordinates and names of the detected

billiard balls. A detailed description of how this is achieved by the utilization of the prediction-

API, is given in chapter 6.2.3.

The “GameManager” class will take advantage of the concrete classes by using objects that

refer to the concrete classes. Meaning that the methods and properties contained by the concrete

classes will be called from the “GameManager” class. The “GameManager” class will also

include other methods. These methods will be responsible for different tasks, which are as

follows: running an interface with the camera, communicating with the connection-API and

running an interface with the GUI. The library “AForge” is used for handling the interface with

the camera. The library “System.Net.Http” is used to run the interface with the connection-

API. There is no need for a library to interact with the GUI. This is because they exist within

Figure 6-15 : Overview of vision system’s tasks

6 Vision system

44

the same environment, Visual Studio WinForms. The “Simulation” class is almost identical to

the “GameManager” class in relation to content and structure. The only difference is that the

“Simulation” class doesn’t include methods that run an interface with the camera. Instead, it

will use predefined images taken during a game to showcase the system. Lastly, the “StartPage”

class will include methods that initialize communication with the communication-API, as well

as methods that send and receive data from the connection-API.

6.4 Pool rules

The game of 8-ball is a game that is associated with a lot of lighthearted fun, but the game

involves a very competitive nature as well. Most people know the basic rules of the game,

however, diving deeper into the documentation of the competitive nature of 8-ball, there are a

lot more rules that apply than one might first think.

A healthy combination of the rules, combined with convenience to make a well-functioning

system, as well as a limited time and difficulty finding a good way to implement some of the

more advanced rules, an adjusted set of rules had to be implemented. In this project, some of

the rules have been made simpler. Some rules have been cut out completely due to difficulty

seeing how to make them work on a consistent basis in a digital system only reviewing pictures,

such as players hitting the other players ball first resulting in a foul. The most notable however,

might be the rule that states a player should call the pocket they intend to put the 8-ball, or

potting it in the hole directly opposite of where their last ball was potted. This rule is deemed

not necessary, as it is hard to track and judge for the system. Other rules have not been touched

and are implemented in the system to make the game flow and feel realistic, even if the full set

of rules is not present in the current system.

Starting the game, the 15 balls are racked in a triangle shape. The 8-ball should be placed in

the middle, but the players can decide on the order of the balls. For simplicity reasons, the

players decide who plays which set of balls before initializing the game, unlike regular pool

where the players break and pocket the set of balls they desire to continue playing with.

Figure 6-16: Illustration of the classes that execute the various tasks for the vision system

6 Vision system

45

Pocketing the other player’s balls and failing to pocket one of their own balls will result in the

player losing their turn. Pocketing the white ball at any point will result in the cue being handed

over to the other player, even if they have pocketed one of their own balls. Having pocketed

all their balls, the black ball is the last ball to be pocketed. The player that first successfully

pockets all their balls and then the black ball at the end, wins the game. Pocketing the black

ball at any point without having pocketed all the balls of their set will result in the game being

lost. If the player by any chance pockets all their balls, then finishes off by pocketing the black

and white ball at the same time, they will lose the game, as it is considered a foul. In Table 6-4

below, one can see an overview of the most common rules that have been implemented, ad-

justed, or left out of the project completely.

Table 6-4 Overview of the most common 8-ball rules [19]

Rule Implemented Adjusted Comment

Coin toss to decide

who breaks
✓

Player 1 breaks, but who’s set up

as Player 1 can be decided with a

coin toss

Legal break

requires a ball to

be potted or four

balls to hit the

cushion

X

Adjusted for

simplicity

reasons

As long as the player hits the

balls, it will count as a legal

break

The first player to

pot a ball of any

sort will have that

sort assigned to

them

X

Adjusted for

simplicity

reasons

The players choose which set of

balls they want before the game

starts by deciding who is player 1

(solid), and who is player 2 (half)

A player continues

to play if they pot

balls of their

designated sort

✓

Call the pocket and

sink the 8-ball after

all balls of their

sort have been

pocketed to win the

game

✓

Adjusted for

simplicity

reasons

The 8-ball can be pocketed in any

pocket, as it is difficult to track

which pocket was called, and if

the 8-ball hit that pocket. All

balls tied with that player must be

potted before sinking the 8-ball to

win

Failing to hit their

own set of balls

X

Difficult to track if the right balls

were hit, so this is left out

6 Vision system

46

Hitting the cue ball

off the table ✓

If the white ball is not present on

the table, the turn is handed to the

other player

Potting the

opposition’s balls
✓

Slightly

adjusted

Potting the opposition’s ball

while also potting one of their

own will not result in a foul

Hitting the cue ball

twice, or pushing

the cue ball

X

Difficult for the system to track.

For fair play, this can be judged

by the players themselves

Pocketing the

8-ball and the white

ball at the same

time

✓

Pocketing the black and white

ball at the same time will result in

a loss

6.4.1 Main methods to enforce the rules as a digital judge

After setting up the game, either starting a quick game or going through the web app, names

and ball type should be ready. The next step, and the main task for the vision system, is to make

sure the game goes through, and that the game rules are enforced in the right way. These fol-

lowing methods, which are located in the “GameManager” class, could be considered the back-

bone of the program.

• Snapshot()

The snapshot method is what sets off the whole program. This method captures an im-

age from the video feed and sends it to the “BallDetection” class to be processed.

• ShowBalls()

This method receives a list of detected billiard-balls. After receiving the list of balls

that are detected, this method goes through the list and transfers this data to the GUI.

• CheckBalls()

Using the same list of balls, this method checks and counts the amount of solid and half

balls in the list. If the number of solid or half balls potted are 7, it means the player can

challenge the black ball, displaying this information in the GUI by making the 8-ball

visible in the display of balls left to sink.

• CheckWhite()

The name of this method speaks for itself. CheckWhite does exactly that, checks if the

white ball is in the list. If the white ball is not on the table, it means it has been pocketed

by one of the players. This will overrule all other things in regard to whose turn it is,

and hand the cue over to the other player.

6 Vision system

47

• CheckBlack()

This method works closely with the two previous methods. Similar to the method that

checks the white ball, this method checks the black ball. If the black ball is no longer

on the table, it will go through a couple of checks to see whose turn it was, if all balls

were potted before potting the black, and if the white ball is still on the table. If all these

requirements are met, the player sinking the black ball wins. However, if one of the

other requirements are not fulfilled, the player in question consequently loses the game.

• CheckResult()

After receiving the data from the above methods, it will be clear if the black ball is

potted, and this method will display the winner, as well as uploading the information to

the database. A timer will also start in order to auto close the main application and head

back to the start page to start another game.

• TurnLogic()

If no winners are declared, this method will check if any balls were potted, and if they

were the right sort of balls, as well as of the white ball is potted. If the right balls were

potted, the player will continue their turn. Otherwise, the cue will be handed over to the

other player. The “Game” class will be utilized to execute this task.

6.5 Graphical user interface of the vision system

The graphical user interface of the vision system is created to provide the user with a graphical

interface, with the aim of using the vision system. The following subchapters will dive deeper

into the graphical interface that is developed in tandem with the vision system. Figure 6-17

shows the interaction between the GUI and the vision system. It will touch on the planning

phase, including the illustrations that started as an idea and became the final pieces that can be

seen in the application, as well as challenges, decisions, and how the result have turned out.

The GUI will be displayed on the TV, is mentioned in chapter 6.6.

Figure 6-17:Illustration that shows the interaction between the GUI and the vision system

Working closely with the vision system, a graphical interface must be developed in order to

show the results of the 8-ball games. Without the interface, the users would not be able to

determine how the game is going, or even instruct the vision system to start processing the next

play. The vision system will transfer data about the state of an ongoing game to the GUI. This

6 Vision system

48

data includes whose turn it is to play and the number of balls each player has left to pocket.

The GUI will also show a live video feed, that the vision system provides.

Development of the GUI was done in Visual Studio and is a WinForms application. The pro-

gram code is written in C# and takes advantage of the form classes and objects to achieve a

simple, yet powerful interface. A user manual will be available in Appendix D.

In the planning process, there is a need for a rough design to lay out the basics when it comes

to look and functionality. The group decided to go with a modern and clean design, as the

application should display vital information about the game and should therefore be easy to

read for both players and spectators. Designed by the group, the artwork is specially made for

this app with a simple but effective design in mind. Some of the illustrations will also be used

in the final design. All designs and illustrations used in this chapter have been made in Adobe

Photoshop.

6.5.1 Ball design

Following the need for illustrations in both the design and in the GUI itself, a set of balls were

drawn. The main purpose of this ball grid shown in Figure 6-18 below, is to display which balls

remain on the table. The grid consists of 15 balls, seven solid balls, seven half balls, and one

8-ball, numbered 1 to 15 like how they would look in real life. The colours of the balls have

been adjusted slightly to achieve better visibility and differentiation. The base colours are still

the same, however, the orange and blue balls have been slightly altered to stand out more from

purple and yellow.

Figure 6-18: Ball design for vision system

6 Vision system

49

6.5.2 Cue design

In order to keep track of whose turn it is to hit the balls, a simple cue was designed, see Figure

6-19. The idea is that the player who is currently playing, has the cue next to their player-name.

As soon as they miss, or otherwise do something to lose their turn, the cue is handed over to

the other player.

Figure 6-19: Design of cue to indicate whose turn it is

6.5.3 Game page design

Using the drawings made earlier, a simple design was made. The pool table displayed should,

according to the planned design, be a live video showing the current game. In Figure 6-20

below, one can see a rough sketch of the GUI. By quickly scanning the design, the reader of

this report can see there are two players, who can each be given a chosen name. In this design,

for simplicity, they’re named Player 1 and Player 2. Player 1 in this case have three solid balls

left to put in the holes, while Player 2 has four half balls left, before they can challenge the

black ball. The cue is displayed next to Player 2, indicating that Player 2 currently has the cue

and is up next.

Central by the lower border of the snapshot, a timer is added to display how long the current

game have been going for. This particular game has lasted for 8 minutes and 36 seconds.

6 Vision system

50

Figure 6-20: Proposed design of desktop application

6.6 Final design

Opening the application, the first thing the user will face is the start page. The start page is

designed to give a clean and fresh interface with user friendliness and a visual good look heav-

ily in mind. The colours in the interface are based on the colours presented in the logo, and

matches the rest of the application interfaces, as well as the design of the webpage developed

together with the rest of the system. The final design of the start page can be seen in Figure

6-21 below.

6 Vision system

51

Figure 6-21: Start page design

Comparing the final design in Figure 6-22 to the idea of a design that was proposed in the early

stages of the project, see Figure 6-20, it looks very similar. Throughout development it received

a lot of attention and looks even better than the proposed design. The background image and

the faded panels give it a more modern look. The design is made up of five main components

and is supposed to display information clearly to the players and spectators. These five com-

ponents consist of the player-name input, the “Select camera” dropdown menu, the “Start

Quickgame” and “Start Simulation” buttons, and the “Camera settings” button at the bottom.

Using and navigating the start page may not be needed, as the players can set up a game from

the webpage, making the game start automatically with the correct name configuration. The

option to start a quick game is implemented in order to start a game without connecting to the

webpage. Pressing the “Start Quickgame” button and starting a quick game will mean that the

game is not connected to any users and will not be stored anywhere for the players to look back

on in the future. Pressing the “Start simulation” button will take the user to a simulation mode,

which will be touched on later on in this chapter.

Looking at the final design, the most important components are the video feed, the displaying

of balls and cue, the timer, and the game ID. A camera is connected, and the video is being

displayed live throughout the entirety of the game. From this video feed, important information

is gathered and displayed as balls left on the table, right below the video feed. A timer is also

located in the lower center to display the duration of the current game. Knowing that the players

are connected to the right game might also be vital, therefore a label displaying the game id

have been implemented in the top left.

6 Vision system

52

Figure 6-22: Final design of the game page

6.6.1 Live video feed

As mentioned in chapter 5 about hardware earlier in the report, the main base of the whole

system is the camera mounted above the billiard table. A Logitech StreamCam is mounted at

an elevated surface and connected directly to the computer running the vision system through

a wired connection. If the camera is connected properly, one should be able to select it in the

interface and have the live video displayed in the application. Without selecting the right cam-

era in the interface, the application itself will not work, simply because the video feed is 100%

necessary in order to send snapshots to the Custom Vision model. Speaking of the video feed,

it is a high-quality video stream in 720p, assuring a good viewing experience for everyone

choosing to watch through the application, as well as a good product as far as pictures for the

Vision System itself is concerned. The camera and system also support 1080p full HD, but the

NUC used in this project struggle a bit with 1080p. Through testing, the group have found

multiple computers to work well with full HD, however, the NUC finds it a bit tough to com-

pute that sort of resolution.

6.6.2 Processing

Upon pressing “SPACE”, the GUI instructs the vision system to execute the methods described

in chapter 6.4.1. This process takes about 5 seconds at most, depending on the internet connec-

tion. While the system is processing the image, the user will not be able to send another snap-

shot before the process is finished. It should be easy for the user to know if the processing is

still going, as a loading icon should be displayed in the interface. Promptly after the processing

have finished, the loading icon will disappear, and the interface will display which balls are

left on the table, and whose turn it is, according to which balls have been potted since the last

image was processed.

6 Vision system

53

6.6.3 Timer

In order to keep track of how long a game has lasted, a simple timer running in the background

was implemented. The timer works as a stopwatch. It starts counting as soon as the game is

initialized by pressing “SPACE” and stops when a winner is announced at the end of the game.

The heavier and more resource consuming tasks run in a background thread, meaning it won’t

disturb the main thread where the timer and GUI runs. This means that the timer and GUI can

keep updating even when the heavier and more time-consuming tasks are taking place.

6.7 Simulation mode

Throughout the development of the main program, a simulation mode has been kept from the

very beginning using much of the same code and methods as the main application. The simu-

lation mode has been updated continuously together with the desktop application and have been

an amazing tool for testing the logic and system without needing to connect to the pool table

itself. The group decided to keep the simulation mode in the final delivery, as it can be a good

tool for new users as training or getting used to the system itself.

The simulator is designed to look exactly like the main program and works pretty much exactly

the same way. One noticeable change however is the lack of video in the application. Without

a camera connected, it is difficult to show a live video feed, but that’s not what the simulator

is for at the end of the day. Replacing the video, a set of pictures are loaded up, and shuffled

through as the simulated game goes on. Pressing space to process will send the picture shown

in the application to the vision system, and it will show which balls are left on the table and

whose turn it is, much like the main application does with a snapshot from the video feed.

Looking away from the obvious difference with the pictures, the code behind is very similar to

the main program and have been tied closely with the main development since the very begin-

ning.

7 Connection-API

54

7 Connection-API
When designing multiple applications, there was a need for the applications to communicate

with each other. The group decided to make an API as a communication interface between the

vision system and the web application. This API is called “connection-API”, and it is created

in Visual Studio by using ASP.Net Web API. This application also runs in the NUC, together

with the vision system. The group choose to create an API since this will provide a flexible,

scalable, and easy way to establish communication between the applications. In Figure 7-1 we

can see a system sketch on how the API endpoints will be structured and accessed by both the

web application and the vision system.

Figure 7-1: API endpoints

7 Connection-API

55

The API will expose multiple HTTP endpoints with different functionality that can be accessed

by different applications. The endpoints can be grouped into four different HTTP methods.

• GET endpoints when called will request some data from a specified resource.

• POST endpoints when called will take provided data from the client and create or up-

date data.

• PUT endpoints when called will update a specific resource. The difference between

PUT and POST is that calling a PUT method multiple times will update the same data

multiple times, while calling a POST method will add the same data multiple times.

• DELETE endpoints when called will delete a specific resource.

In this project, there are five different endpoints that can be called by the applications that

retrieve, provides, updates, or deletes data on the vision system.

• <GET> TableAvailability is used to provide information about the status of the table.

If there is an active game on the table it will return false and if the table is not in use, it

will return true. This can be used to decide if the web application can create a new game

on the specific table or not.

• <POST> StartGame is used to start a new game. This endpoint requires five parame-

ters. The game-ID, the two player-ID’s and the usernames. After receiving the data, the

endpoint will validate the data and if valid start a new game and return an “ok” response.

If the data is invalid or wrongly formatted it will return a bad request and not start the

game.

• <DELETE> GameStop is used to stop an ongoing game. This endpoint only requires

one parameter that is the game-ID. If the provided game-ID is matching the game-ID

on the active game, the game will be stopped, and an “ok” response is returned. If the

game-ID is not matching, it will return a bad request, and the game is not stopped.

• <PUT> UpdateTableStatus is used to update the status of the table. The method re-

quires one parameter which is the status (true/false). The vision system will use this to

update the table-status when starting and stopping a game.

• <GET> GetInfo is used to access information about an ongoing game. This is mainly

used by the vision system to acquire the game details of a new game.

8 Database

56

8 Database
To store and access data from the different applications, a database was created. The database

will be accessed by both the web application and the vision system. The vision system is mostly

storing and retrieving data about a specific game. While the web application is responsible for

creating new users, games, tournaments, and update these accordingly. The data stored in the

database will also be used for different statistical calculation in use on the web application.

8.1 Evaluated databases

When choosing a database, there are mainly two different database types to choose from. The

first is a relational database where the data is structured in tables, often with relationships and

dependencies. The other type of databases are non-relational databases. Here, the data is not

structured in the same way as in a relational database and can support larger amounts of data.

Since most of the data generated will have natural relations, the best option for the project

would be a relational database. The databases in Table 8-1 have been evaluated according to

price, documentation, ease of integration, and scalability.

Table 8-1: Overview of evaluated databases

Name
Open

source

Price in

NOK
Ease of use Documentation

MS SQL No 9000+ Easy Very good

MS SQL

Express
No Free Easy Very good

Oracle DB No 30 000+/- Medium Good

MySQL Yes Free Easy Good

PostgreSQL Yes Free Easy Good

• Microsoft provide both a free and a paid version of their SQL Server database. The free

version limits the database size to 10GB, the maximum memory usage to 1GB and a

maximum of 4 CPU cores. These limitations would not affect the project in the startup

phase but could lead to scaling issues in the future.

The paid versions have higher limits which would increase the scalability, but it would

increase the cost, and it would introduce a more complex licensing depending on the

usage. Each version mentioned above integrates well with both .NET and NodeJS.

8 Database

57

• Oracle is providing both a free and a paid database solution. The free option is MySQL,

which is an open-source database. MySQL has been around for a long time and has

proven its stability and reliability. It can scale well for small to medium applications

and integrates well with .NET and NodeJS.

Oracle’s paid database is Oracle DB, which is an enterprise database comparable with

MS SQL server from Microsoft. Oracle DB can manage large amount of data and can

scale to meet the most demanding applications and data needs, but it comes with a huge

cost and a complex licensing system.

• The final evaluated option is PostgreSQL, which aims to be an open-source enterprise

database like MS SQL and Oracle DB. PostgreSQL provides many of the same features,

but for free. It is one of the most popular open-source databases in 2022 and provides

great scalability, documentation, and integration with both .NET and NodeJS.

After evaluating the different database options, the best option for this project would be

PostgreSQL. The main deciding factor for this choice over MySQL, was the improved per-

formance of PostgreSQL, and the ease of use of the administration-tool for the database

(PGadmin). The other options were dismissed because of excessive cost or low scalability

compared with PostgreSQL and MySQL.

8 Database

58

8.2 Database structure

After deciding on what database to use, the planning of the data structure and relations could

begin. The database "Billiard_System", contains eight tables with various relevant columns.

Table 8-2 shows all the tables with a description of the various columns.

Table 8-2: Overview of tables and their columns

Player Game
Game_

Player
User Billiard_Ball Tournament

Tourna-

ment

Players

Table

Players

player-

ID

Game ID
Game

ID
User ID Game ID

Tournament

ID

Tourna-

ment ID
Table-ID

Number

of wins

Timestamp of

game

creation

Player

1’s

Player-

ID

Username X position
Tournament

name

Player

ID

IP

address

Number

of losses

Timestamp of

game start

Player

2’s

Player-

ID

First name Y position

Timestamp of

tournament

start

Active

status

Players

user-ID

Timestamp of

game end
 Last name Player ID

Timestamp of

tournament

end

Player-ID of

winner
 Email

Timestamp of

ball location

Player-ID of

loser
 Password Play count

Associated

table-ID
 Active status Ball color

 Ball ID

8 Database

59

8.2.1 Table overview

The tables, and the relationships between the tables shown in Table 8-2 above are based on

information that the database must contain. The bullet-points below describe the information

the database should contain.

• “User” is the table where the information about all the users who register on the web

application will be stored. Here, there will be generated a user-ID, which will function

as the table’s primary key. The table also contains the user’s first and last name, email

address and password. To ensure that the password is stored in a secure way, all pass-

words are hashed and salted before being stored in the database. The last column of the

table is the active column. This column is used to indicate if the user is active or not.

Instead of deleting a user, the administrator can disable the account by changing the

content of the column from true to false.

• “Player” is the table where the users are associated with players by including a column

for user-ID. The player-ID will function as the primary key for this table. The table also

contain columns for wins and losses, where the number of wins and losses associated

with the player is stored. The last column is the “user-ID”, which is as foreign key from

the “User” table used to link the user-account and the player together.

• “Game” is the table where all the game data is stored. Each game is assigned a unique

game-ID, which acts as the table’s primary key. The table also contains three timestamp

columns. One for when the game was created, one for when the game started, and one

for when the game ended. The table also has two columns for the winner and loser.

These columns are populated with the players player-ID’s. The last column is the table-

ID, which associates the game with specific table. This is a foreign key inherited from

the “Table” table.

• “Game_Player” is the table where the games are associated with the players. The

player-ID’s (foreign keys) of the players associated with a game-ID’s (primary key) are

going to be stored in this table.

• “Billiard_Ball” is the table where ball positions are associated with a game. Here the

“ball-ID” column functions as a primary key and the “game-ID” column (foreign key)

are associating the data with a specific game. The ball coordinates are stored in the

column “x position” and “y position”. To differentiate the balls from each other, the

“ball color” column is used. The “play count” column will increment by one for each

turn taken by the players. Each turn is also associated with a player-ID (foreign key) in

the “player-ID” column.

• “Tournament” is the table where the information about different tournaments is stored.

The “tournament-ID” column is used as a primary key. The table also contains the name

of the tournament in the tournament name column. The table also contains three

timestamp columns, one for when the game was created, one for when the game started,

and one for when the game ended

8 Database

60

• “Tournament_player” contain information about which players are associated with

which tournament. Here, the “tournament-ID” and “player-ID” column makes up the

primary key. This will ensure that we can only have one pair of matching tournament-

ID and player-ID.

Figure 8-1: An overview of the tables and the relationships between them

9 Web Application

61

9 Web Application
The web application is the main connection between the users and the vision system. It should

be able to connect to the vision system. It should also easily increase or decrease the number

of vision systems that are connected to the system, and support multiple concurrent users. The

users should also be able to start games, tournaments, and see statistics about their gameplay.

The application is developed with JavaScript using the NodeJS framework in Visual Studio

Code. NodeJS was chosen since it’s a widely used, very agile and is widely supported with

plugins, libraires and documentation online.

The subchapters below will go more into details on how these requirements were solved. To

see the full requirement list, see chapter 4.2.

9.1 Libraries and package manager

When developing an application, the use of libraries can be a very useful thing. The use of

libraries can decrease the time used for development and make integration with other applica-

tion and services much easier. To install these libraries and keep them updated the package

manger node package manger, or for short NPM, has been used.

Without these libraries the main application will not work, and they will therefore be consid-

ered dependencies. All the dependencies for the web application are listed in Table 9-1.

Table 9-1: The web application’s dependencies

Name Usage Version

Express The web application framework 4.17.2

Express session Used to keep track of user sessions 1.17.2

Express flash Used for displaying flash messages 0.0.2

PG Used to interact with the Postgres database. 8.7.1

Passport Used to authenticate users across the webapp 0.5.2

Passport-local Used to authenticate locally 1.0.0

bcrypt Used to hash and salt passwords 5.0.1

dotenv
This is used for storing and accessing sensitive

information (passwords, API keys, etc)
10.0.0

Node-fetch Used to interacts with API 2.6.1

Canvas Used to draw HTML canvases 2.9.1

EJS Template engine to generate HTML content 3.0.2

9 Web Application

62

Moment Used to generate timestamps. 2.29.1

Bootstrap

Used to access predefined CSS, HTML and

JavaScript content. Mostly used for designing

and animating the pages.

5.1.3

Method-override
Used to implement DELETE and PUT methods

in HTML.
3.0.0

9.2 Use case diagram

Figure 9-1 shows the use case diagram of the web application. The diagram is used to display

all functions accessible to the different users using the application.

• The first user is the user who is not signed up with an account. These users can access

mainly the informational pages and the live view page.

• The second type of user are the one who has signed up for an account. They can access

the same pages as the users without an account, including the pages to create/join

games, create tournaments, rewatch previous games, access personal statistics, and user

data.

• The last type of user is the administrator. This account has the same privilege as the

previous users but has also access to the administrator panel. Here, the user can admin-

istrate active games, users, and tables connected to the system. This panel is described

in more detail in chapter 9.4.8.

Figure 9-1: Use case diagram for web application

9 Web Application

63

9.3 Program structure

The application is mainly divided into five different JavaScript modules. Each module (except

server.js) is exposing different methods that can be utilized by the other modules. The applica-

tion is designed in a way that makes the reuse of code possible and encouraged, like the classes

described in the vision system’s chapter 6.3. Figure 9-2 provides a visual representation on

how the different modules make up the web application.

Figure 9-2: Structure of the web application

• The vison module provides different methods that allow the connection-API to interact

with the different vision systems. The API operates as a message broker between the

vision system and the web application, and the methods in the module can start and stop

games or check if there is an active game or not.
• The passport-config module is the module responsible for the authentication and au-

thentication parts of the application. This will keep track of sessions, and use bcrypt to

hash passwords when registering a new user, or compare hashes when user tries to log

in.
• The database module contains different methods to interact with the database. This

module is used to get game details, update user data, delete a game, fetch ball coordi-

nates, etc.

• The canvas module mainly contains one method which serves the purpose visualizing

a billiard table when provided with the coordinates of a set of balls.
• The last module is the server module. This is the module running the express web ap-

plication and provides the routes to all the differ pages that make up the web applica-

tion. This module is combining many of the other methods from the other modules to

respond to requests and provide response back to the user with the required data.

9 Web Application

64

9.4 Web pages and functions

The individual pages on the web application are sectioned into three different sections. This

was done to create a structure for organizing the different content. To increase the visual appeal

of the web application a background image of a billiard table was added. The background im-

age can be seen implemented on the front page in Figure 9-7 and the source of the image is

listed in the reference section [20].

• The first section of the page is the navigation bar. The navigation bar is what the user

will use to navigate the page. The different menu options will be highlighted in response

to what page the user is accessing. The navigation bar can be seen in Figure 9-3. The

“Home” section is highlighted in white since the user is accessing the home page.

Figure 9-3: Navigation bar

The navigation bar is mostly static except the FAQ menu and the user menu on the far

right. Pressing FAQ will reveal three new options that can be seen in Figure 9-4.

Figure 9-4: FAQ dropdown menu

The other dropdown menu will change from “Login or register” to the user’s username

when they’re logged in. When not logged into an account, the menu will provide the

user with the option to log in, or to register. When logged into an account the menu will

provide the user with the possibility to either access their profile page or log out. When

the admin account accesses the menu, it will be populated with an extra option to access

the admin panel. These three options can be seen in Figure 9-5. The admin panel is

described in more detail in chapter 9.4.8.

Figure 9-5: Dropdown menu to access profile or log out

9 Web Application

65

• The second part of the page is the body. This is where the different content will be

displayed depending on what page the user load. The size of the body is dynamic so it

will scale depending on the page content and the user’s screen size.

• The last section is the footer. The content in the footer is static and is displayed in the

bottom of every page. This is mostly used to indicate the bottom of the page. The footer

also contains a link to the about page where the user can read about why this page exists

and who created it. The footer can be seen in Figure 9-6.

Figure 9-6: Web page footer including an “About” section

9.4.1 Front page

The front page is the first page the user will access and it’s therefore very important that it

gives a good first impression. Therefore, the decision to make it a very simple page was made

early in the design process. If the user is not logged in, they will be prompted with a welcome

message, and information about how to get started playing. This can be seen in Figure 9-7.

Figure 9-7: Frontpage when user is not logged in.

If the user is logged in, they will instead see a message saying that they could join a game by

providing a game-ID or press a link to create a new one. This can be seen in Figure 9-8.

9 Web Application

66

Figure 9-8: Frontpage when user is logged in

9.4.2 Register page

The “register” page is where users can sign up for an account for the website. The page requires

the user to input their first name, last name, email, and a password. The password must meet a

minimum requirement of 12 characters, minimum contain one number and a special character.

If the user inputs mismatching passwords or a password not meeting the minimum require-

ments, they will be provided with an error message. The different messages can be seen in

Figure 9-9.

Figure 9-9: Registration form and possible outcomes

9 Web Application

67

After the user has submitted the form, the data is validated to ensure the email and username

is not already taken, and that the password meet the minimum requirements. If the validation

succeeds, the password will be hashed, salted, and stored in the database. This will ensure that

if the database is compromised by an attacker, the passwords will not be humanly readable.

After the user data is added to the database, the user will be redirected to the login page dis-

playing a success message.

9.4.3 Login page

The login page is where the user inputs their username and password to access pages like their

profile page, game creation page, or other login restricted pages. If the password is incorrect or

the user does not exist, the user is promoted with a flash message informing them about why

they could not log in. The form and the flash message displaying incorrect password can be

seen in Figure 9-10.

Figure 9-10: Login form

After the user has entered a username and a password, the web application will process the

username and password with the passport module, which is described in more detail in chapter

9.3. The Password will validated, if the username and password combination match with the

data in the database. If valid, the user is allowed to login.

9.4.4 Profile page

The profile page will be the user’s main page where they can start new games, tournaments,

watch previous games, see statistics, or update their user details. The statistics that’s displayed

to the user is a bar chart representing their win/loss ratio compared to the average ratio of the

other players on the page. An overview of the page can be seen in Figure 9-11.

9 Web Application

68

Figure 9-11: Profile page overview

If the user accesses their profile page while in a game, the ability to create or join a game will

be replaced by a message saying that they are already in a game. The difference between these

two views can be seen in Figure 9-12 and Figure 9-13.

Figure 9-12: Profile page if user is not in a game or a tournament.

Figure 9-13: Profile page if user is in a game or a tournament.

9.4.5 Create and join games

From the profile page, the users can either choose to create a new game or join someone else’s

game. This form can be seen in Figure 9-14. To create a new game, the user will have to provide

a table-ID which will be printed somewhere on or around the billiard table. After the user enters

the table-ID, they will be provided with a game ID, which they can share with the other player.

The other player can then enter this game ID into the join game field to join the game.

9 Web Application

69

When both players have joined, they have the option to either start or cancel the game. This

can be seen in Figure 9-15.

Figure 9-15: Game lobby page

Figure 9-14: Create and join game from

9 Web Application

70

9.4.6 Create a tournament

The users have also the possibility to start a new tournament from their profile page. After

pressing the “Start a tournament” button, they will be redirected to a form where they can enter

a tournament name and add all the associated players. The tournament mode has a minimum

of 4 players, and a maximum of 12, where the user can dynamically adjust the number of play-

ers in the tournament. This can be done with the add or delete button in the bottom of the form.

This can be seen in Figure 9-16.

If any of the provided usernames are not associated with a user, a flash message displaying

the invalid usernames are shown. This can be seen in Figure 9-17.

Figure 9-17: Invalid username in tournament creation

Figure 9-16: Create tournament page with different amount of players

9 Web Application

71

9.4.7 Previous games

To provide the users with a possibility to rewatch their games, there has been implemented a

feature, which will let the user choose from a list of their previous games and pick a play-

through. This option can be found in the user’s profile page, and one can see an example of

this in Figure 9-18.

After choosing a game it will load within 4-10 seconds depending on the number of images the

system has to generate. The user can then see who they played against, playtime, and who won

the game. They can use the back-and-forth arrows to cycle between all the turns and see how

the game progressed. The images are generated the same way as described in chapter 9.4.9,

and a small amount of frontend JavaScript handles the cycling between the images. This menu

can be seen in Figure 9-19.

Figure 9-19: Rewatch previous games

Figure 9-18: Show previous games

9 Web Application

72

9.4.8 Administration panel page

To provide the system administrators the possibility to manage tables, users and games, an

admin panel was created. To ensure that the page is only accessible to authorized personnel, it

can only be accessed by the user with the username “admin”. After logging in with the admin

user, the admin panel can be accessed by the dropdown menu on the right side of the page.

The admin panel is divided into three main sections:

• The first section for the admin panel is for managing the tables connected to the web

application. Here, the admin user can add a new table by providing the IP address of

the table. If they would like to deactivate a table for being used, they can select the table

ID from the dropdown menu and press the “Deactivate table” button. This will prevent

any users from creating a new game on the disabled table. This can be undone by se-

lecting the disabled table ID from the list and press the “Activate table” button. These

options can be seen in Figure 9-20.

Figure 9-20: Manage tables menu

9 Web Application

73

• The second section of the admin panel is for managing users. If the admin users wish

to disable access to the web application for a specific user, they can select that user

from the list and press the “Deactivate user” button. If the deactivated user tries to login,

they will get an error informing that the account has been deactivated. This can be un-

done by selecting the disabled username from the list and press the “Activate user”

button, as seen in Figure 9-21.

Figure 9-21: Manage users’ menu

• The last section of the admin panel is for managing active games. Here, the admin user

will have an overview of all the active games and can cancel these by pressing the

“cancel” button. This can be useful if there are any issues with the software running on

the table, or the players have left the table and forgot to finish or cancel the game. This

panel can be seen in Figure 9-22.

Figure 9-22: Mange active games menu

9 Web Application

74

9.4.9 Live gameplay page

To provide the possibility to watch live games from anywhere in the world, an animated version

of the game can be accessed by entering the game-ID in the search field in the navigation bar.

After providing a valid game-ID the live game page will reload and show the latest data of an

ongoing game.

To display the balls, the latest ball locations are retrieved from the database, and a HTML

canvas is created with a picture of a pool table [21]. After the table is added, each ball is drawn

on a separate layer based on their location, colour, and type. When this is done, the image is

converted to a byte64 string and displayed as an image for the users. The page can be seen in

Figure 9-23.

Figure 9-23: Graphical representation of the live game

9 Web Application

75

9.4.10 Scoreboard page

To provide an overview of the players ranking on the page, a scoreboard was developed. The

page calculates the win/loss score for all registered users and provides the data visualized in a

bar chart. The page is not access restricted and can be accessed even without an account. The

chart is generated using chart.JS and can be seen in Figure 9-24.

Figure 9-24: Scoreboard page

9.4.11 FAQ pages

There are three different pages accessible from the FAQ menu in the navigation bar. All the

pages are delivering static content to provide the users with different information. The sites can

be accessed by both users with and without and account.

• The first page is for displaying a list of the game rules. This was made to ensure that

everyone uses the same ruleset as the vision system. The page is displaying a list of

rules like what’s described in chapter 6.4.

• The second page is providing user with information on how to get started playing. The

page provides a short step by step guide on how to create a game and how to join a

game.

• The last page is the “About” page that will inform the user about why the page was

created and who created it.

9 Web Application

76

9.5 Communication and security

With a publicly accessible web application, communication with both different clients over

unknow networks, other applications and databases will accrue. It’s therefore important to en-

sure a secure and reliable communication between all devices and services.

9.5.1 Communication with the vision system

On the same virtual server as the web application, an OpenVPN server has been installed to

provide connection with the vision systems. For each new vision system that wants to com-

municate with the web application and the database, a new certificate and private key must be

generated.

Using the certificate, key, and a client application, the vision system (client) can establish an

encrypted tunnel with the web application (server). This will ensure that all the commutation

between the sever and the client is encrypted and cannot be easily intercepted. The OpenVPN

server can handle up to 100 clients. This is possible because each client generates a very low

amount of traffic. If there is a need for more than 150 clients, the virtual server can be equipped

with more ram and processing power to accommodate the extra clients. According to Open-

VPN’s documentation a recommended practice is to add 1GB extra ram for each 150 connected

clients [22].

Using a VPN will also solve the issue with establishing connections with devices behind a

NAT. Figure 9-25 provides an illustration on how multiple vision systems can communicate

with the web application and the database.

Figure 9-25: VPN connection between web application and multiple tables

9 Web Application

77

9.5.2 Communication with clients

To ensure a secure connection between the clients and the web application, the use of the

HTTPS protocol has been implemented in favour for HTTP. HTTPS will ensure that the com-

munication is encrypted and cannot be easily intercepted and provides a higher level of trust.

This is critical when exchanging passwords and personal information over the internet.

Let’s Encrypt has been used to generate the required certificates, keys, and validate this towards

a domain name (smartpool.no). This will result in a more secure page that is harder to imper-

sonate, and more resilient to man-in-the-middle attacks [23] The processes of generating the

required keys and certificates can be seen in Figure 9-26 provided by Let’s Encrypt.

Figure 9-26: Let's Encrypt setup example

9.5.3 Communication with the database

To ensure limited access to the database, the database has been configured to only accept in-

coming connection from local services running on the same machine, like the web application,

and the private subnet allocated to the OpenVPN clients (10.8.0.0/24). This will ensure that it’s

not publicly accessible and will therefor reduce the attack surface.

10 Testing

78

10 Testing
In this chapter, an evaluation will be given on how well the overall system works. This will be

achieved by basing the tests in the requirements described in chapter 4.

Table 10-1 shows the test results for the vision system and GUI. Table 10-2 shows the test

results for the web application. The testing of the system was also conducted with external

students and their feedback is included in the overall evaluation.

Table 10-1: Tests for the vision system and GUI

Test

case
Test description OK Failed Comment

1
The vision system can establish

connection with the connection-API
✓

2
The vision system can establish

connection with the database ✓

3

The vision system can detect and

classify billiard balls, using

Azure’s Custom Vision
✓

Fails to correctly classify the striped

balls in some instances where the

white part of the balls is positioned

perpendicular to the camera.

4
Receive images and a live video feed

of ongoing game from the camera ✓

5
Implement game rules of 8-ball to

interpret games ✓

Game rules are modified because of

the limitation of having to process a

still image

6

The vision system can transfer data

and a live video feed of the ongoing

game to the GUI
✓

7
The GUI shows live video feed of

ongoing game ✓

8 The GUI shows scoreboard ✓

9 The GUI indicates whose turn it is ✓

10
The GUI can instruct the vision

system to activate next play ✓

11

The GUI can display which balls

remains to be pocketed for each

player
✓

10 Testing

79

12 The GUI shows duration of the game ✓

Table 10-2: Test for the web application

Test

case
Test description OK Failed Comment

1
Users should be able to register an

account
✓

2
Users should be able to sign into their

account ✓

3

Users can create a game on any given

available table. If not, they are

provided with an appropriate flash

message

✓

The flash messages could

be improved with better

description of the error.

4

Users can access previous games and

the loading speed is not more than 10

sec
✓

Loading times can be

above 7 seconds if there

are more than 35-40

images.

5

Users can join a game. If not, they are

provided with an appropriate flash

message
✓

6
Users should be able to cancel a game

or leave a tournament ✓

This works, but if there is

no connection with the

connection API, the vision

system will still be running

on the local computer and

the game will be changed

to ended in the database.

7

Everyone on the page should be able to

see the game rules (including the ones

without an account)
✓

All informational pages

are accessible without an

account.

11 Deployment and distribution

80

11 Deployment and distribution
In the later stages of this project, the need for a way to download and install these applications

also had to be considered. What options were available and evaluated, and which way would

be the most convenient for both developers and users? The following chapter goes through the

deployment and distribution aspect of the applications.

11.1 Deploying the web application

After the development of the web application was completed, it had to be deployed somewhere

so it could be accessed by clients over the internet. For this, two options were considered:

• The first option was to deploy it locally at the University. This could probably be pro-

vided free of charge by the University. A downside of this option is that it could be

more time consuming since the students don’t have access to the necessary equipment

and infrastructure.

• The second option was to use a public cloud provider. This option would provide the

students with full access to a virtual machine with a public IP, and a basic firewall for

about 4 USD per month. This also provides great scalability and the possibility to get

more features like VPN gateways, load balancer, etc if needed.

After evaluating the different options, the public cloud option was selected. This was selected

since both Azure and Digital Ocean was providing a free 100 USD credit. The ability to also

setup everything without having to interact multiple people was also a great addon.

Digital Ocean was used since the free credits provided by Azure was going to be used for

training the vision model as seen in chapter 6.2.

A virtual machine was deployed with 1GB ram, 1 CPU core and 25GB of storage with the

Linux OS Ubuntu server 22.04. PostgreSQL was installed and configured to match the schema

discussed in chapter 8.2. The code for the web application was cloned from the GitHub repos-

itory and dependencies were installed using the “NPM update” command as mentioned in chap-

ter 9.1. The application pm2 was installed to run the web application and keep track of logs.

After the installation of pm2, the application could be started by running the command “pm2

start server.js”.

To access the web application remotely, incoming connections on port 443 and 80 had to be

allowed in the firewall on the server’s and on the firewall for the local network in Digital Ocean.

The port 1194 was also allowed in the firewall to accommodate the VPN connections from the

vision systems.

To allow communications with the vision systems, OpenVPN was installed and configured

using an automated script [24]. After the installation was finished, a new client config was

generated as described in chapter 9.5.1. The config file was imported into the local develop-

ment computer and used to establish a connection with the server.

The installation process has been semi-automated using a bash script to make it easier to deploy

the application. This script will install all the needed frameworks, clone the code repository,

install dependencies, configure the environment file, and generate new SSL certificates. After

the installation is done, the script will provide the user with information on how to install the

11 Deployment and distribution

81

SSL certificates and start the application. The script can be downloaded from the code reposi-

tory.

11.2 Installing the Smart Pool application

Following the completion of the final iteration of the vision system, a way to access it for third

party users had to be developed. The easiest way to distribute the application without extra cost

of hardware was through GitHub. GitHub is free of cost, and lets developers distribute their

work across the internet.

To package the necessary files, a “Setup Project” was made through Visual Studio. The tool

allowed multiple files and projects to be added, so that the user can install the whole package

at once, including the main application and the API. In order to set up a connection however,

the user will have to install and set up OpenVPN. This is a third-party program that has not

been developed in this project and is therefore not included in the installer.

After downloading setup.exe or setup.msi from GitHub [25], the user will be presented with a

very simple install wizard. From there, the user can choose the save location. When the instal-

lation is complete, the user will find an icon for the application on their desktop. The applica-

tion is now ready to use.

12 Discussion

82

12 Discussion
This chapter contains the discussion of the results and solutions that has been presented in the

later chapters. To solve the problem at hand, the group created a vision system application and

a web application. Upon adding new features or changes, the system would be heavily tested

in order to secure the performance of the system. The first subchapter discusses some of the

observed flaws that the vison system has and presents some plausible solutions for future work.

The second subchapter discusses some of the observed flaws that the web application has and

presents some plausible solutions for future work.

12.1 Vision system

The vision system is mainly created to detect billiard balls on the billiard table, judge a game

of 8-ball, display an ongoing game, and store and retrieve data from a cloud-based database.

The vision system executes most of its tasks as expected, but it does come up short in some

aspects of these tasks, meaning there’s still room for improvement.

12.1.1 Custom Vision

The model fails to correctly classify the striped balls in some instances where the white part of

the balls is positioned perpendicular to the camera. This can be seen in Figure 12-1. Instead of

correctly classifying the balls, the model classifies the detected balls as a “white” ball. This is

a comprehensible prediction from the model. This is because the striped balls, in instances

where the white part of the balls is positioned perpendicular to the camera, have similar visual

characteristics to the white ball. For future work, installing additional cameras in different po-

sitions around the billiard table that produce images of the billiard balls with different angles,

should be considered. These images would then be sent to the model for training and prediction.

This could drastically increase the model’s precision to correctly classify the striped balls. A

disadvantage with a solution like this is that the cost will be higher. Another option which could

solve or completely eradicate this problem, would be having 7 yellow and 7 red balls instead

of the striped and solid balls. Implementing this change would mean the model would have to

be trained using that set of balls, and certain other features in the applications would have to

be changed compared to how they are set up currently. However, that would be a simple, cheap,

and rewarding solution.

12 Discussion

83

Figure 6-11 shows the final performance-metrics for the model. The model’s precision is at

98%, the recall is at 94%, and the mAP is at 94.7%. But these performance-metrics can be

misleading, as the Custom Vison model could face challenges if it was faced with untrained

scenarios. Although there was a focus on feeding the model with training-images that varied in

visual characteristics, as the documentation for Custom Vision recommends [18], the variety

of the images were limited because of the resources that were available. The main limitation

was the availability of billiard tables that had different surface colours. The model would face

some level of challenge if the billiard table used in this project was replaced by a billiard table

that had a different surface-colour. This is because the model was trained using images that

only included the blue-surfaced table. Although, it is unclear how much the model would be

affected. A solution for this in future work, can be to train the model with tables having differ-

ent surface-colours. Another limitation to factor in, is the lighting options. Although there was

some verity in the lighting of the training-images, the room that was utilized offered little in

regard to lighting options. Therefore, the assumption is that untrained lighting scenarios would

have some degree of effect on the model’s performance.

The vision system utilizes the model by interacting with a prediction-API. This means that the

vision system is completely dependent on an internet connection. This only becomes a problem

if the user wants to play a game and there is no available internet connection. For future work,

exporting the model as a docker container should be considered. This docker container would

then be installed in the same machine that runs the vision system. This solution would mean

that the vision system could interact with the Custom Vison model without the need of an

internet connection, and consequently the prediction-API. Additionally, the response time from

the model, would also be reduced and no longer reliant on the internet connection. Lastly, by

exporting the model as a docker container, the prediction-cost would be eliminated.

12.1.2 Visual system GUI

During development, and all the way throughout the project, performance have been heavily

weighted. A clean and good-looking design, combined with a good performance was an obvi-

ous target to have in sight. WinForms is in hindsight not the best solution for either of these

Figure 12-1: The white parts of the striped balls are positioned perpendicular to the camera

12 Discussion

84

things, as the performance is not great, and the design of a full screen high-definition applica-

tion is not where it thrives.

As stated earlier in the report, the GUI struggled to run a timer while displaying a full HD

video. The video feed would be alright, but the timer would not tick for some odd reason.

Another thing that seemed to bottleneck the performance was the resolution of the background

image. The image had to be downscaled to 360p in order to keep the framerate of the video

feed at an acceptable level. Issues regarding the loading of the application also presented itself

later in the development. Double buffering was implemented in order to reduce flickering while

loading the application, and upon loading/removing the pictures of the balls. Double buffering

seemed to help a lot, however, there are still some flickering and flashing when initially loading

the application. All these problems could be a hardware related issues, and a more powerful

computer would most likely preform even better, based on testing done with other computers.

To further boost the performance of the application, a change from WinForms to WPF would

be beneficial. Both frameworks are great in their own aspect to their purposes, but WPF beats

WinForms in every aspect when it comes to performance. WinForms might be easier to get

started with, but WPF is newer and more advanced, allowing for better scalability (as it is not

pixel-based) and better overall performance. In hindsight, WPF would be the better option.

The application is also heavily reliant on a person operating it. This could be one of the players,

or a set person that would press “SPACE” after each play. Initially, this was also the plan, as

the experience with such advanced applications and automation was limited. So, pressing a

button to send a picture to the model seemed like a realistic way to solve that part of the task.

A way to improve the system in the future would be to implement a feature that removes this

operator role, making the system automated.

12.2 Web application

The web application is the main interface for the users interacting with the different vision

systems. It provides both general information and can provide personalized information if the

user has signed up for an account. Since the application is accessible over the internet it’s im-

portant that it’s secure to use, personal data is stored securely, and data access is limited. In the

current state of the application, all requirements for the applications have been implemented.

Most of the implemented features are working flawlessly, others could be improved somewhat,

and only one requirement is not working as excepted. These subchapters will look more into

how these issues affect the system, and how they could be fixed or improved.

12.2.1 Tournament mode

During the start of the project, the group decided to create a tournament mode to allow the

different users to create their own tournaments, but the implementation of this did not work out

as planned. The creation of the tournament was implemented and worked as expected but link-

ing games to a tournament did not work as intended. To solve this issue, a change in the data-

base structure is necessary. This could be achieved if more time was provided. A possible so-

lution could be to create a link (foreign key) between the game and the tournament table. There

is also a need to implement this change in the application code.

12 Discussion

85

12.2.2 Creating games and tournaments

At the end of the development, when discussing different security related topics, a problem

was discovered. With only access to the web application, users can create games without being

present at the billiard saloon. This can result in users sitting at home, creating games with

different accounts to occupy all the tables without playing.

To solve this issue, a small validation could be implemented. This validation could ask the

users to input a daily code only visible in the physical locations of the billiard tables. This could

be implemented by creating a random 6-character long code that the user will have to enter

before creating a game or a tournament. To display this code a separate screen could be used,

or it could be integrated into the Vision Systems GUI visible when a game is not active.

12.2.3 Live streaming

The ability to provide a live feed of the games has been a big goal since the beginning of the

project. A semi live solution has been implemented which provides an animated image of the

latest known position of the balls on the billiard table. The semi live solution works, but it does

not show where balls are pocketed, or how the balls moved since the last update. Considering

how the vison system is designed, it’s not possible to provide this information at this time. If

provided more time, the video feed from the vision system could be accessed by the web ap-

plication trough the connection API, and the web application could provide this stream to the

users.

12.2.4 Connection with the vision systems

To communicate with the vision systems, a VPN solution has been implemented. How this has

been implemented is that each vision system that needs its own certificate, key, and client soft-

ware. The generation and revocation of these certificates must be done through the servers CLI,

and this manual work could be automated and implemented into the admin panel if given more

time. This would greatly increase the ease of use of the product.

Another solution to this problem would be to set up a site-to-site VPN connection. This would

provide a local network access between the vison system at the billiard saloon, and the web

application in the cloud. This would eliminate the need for the individual certificates for each

vison system, but it would require more advanced networking hardware on the premises. This

could increase the initial cost of implementing the solution if such hardware is not present. An

example of the proposed site-to-site VPN solution can be seen in Figure 12-2.

12 Discussion

86

Figure 12-2 Proposed site to site VPN solution

13 Conclusion

87

13 Conclusion
The objective of this project was the creation of a system that can monitor and present the

progression and outcome of a game of 8-ball. To achieve this, a vision system application that

utilize a Custom Vision model and a GUI to present, configure and monitor a game of 8-ball.

A web application was created to provide the users with an interface to interact with the vision

system and present games, both live and archived. This is achieved by utilizing the database

and the connection-API.

Azure Custom Vision was the service that was used to detect and classify the billiard balls,

mainly because of its affordability and flexibility. Although the developed Custom Vision

model works well in most instances, there were an observation made where it didn’t perform

as expected. The observation mentioned, was the model’s inadequate ability to correctly clas-

sify the striped balls correctly in some instances. Because of the limited resources, the model

may also face problems in new environments that introduce the model with untrained scenarios.

The vision system’s reliance on the internet will also restrict the usability of the system when

there is no internet connection.

The vision system GUI was made in Visual Studio, using C# as the programming language,

and WinForms as the base framework for design. This decision was made due to the group

having experience using these tools throughout the education. Deciding to go with WinForms

eventually proved to be a slight misstep, as it buckled a bit in terms of performance as the

program got more complex. As a result of that, features such as the quality of pictures and

video had to be compromised.

The web application was written in JavaScript using Visual Studio Code. The application pro-

vides the users with an interface to interact with the vision system from their phone, tablet, or

computer. The user can create or join games, see statistics, and view playthroughs of previous

games. The tournament mode was not fully implemented and are now in a semi working state.

The possibility to create the tournament and assigning user to it is working but linking games

to a tournament has not yet been implemented. This has resulted in a non-working tournament

mode. The application also has implemented a live view page where users can enter a game ID

to watch an ongoing game live. This was implemented by not streaming the video feed from

the camera, but instead creating a static image representing the latest known ball positions.

This resulted in just a static image being represented to the viewer, which occasionally updates,

instead of an actual live feed where one can see the balls moving in real time.

To establish communication between the web application and the different vision systems, a

VPN solution has been implemented. Each vision system will be identified using a unique

certificate. This will allow the application to connect to multiple systems that can be in different

billiard saloons all around the world. An improved solution for this would be to create a VPN

tunnel between each location instead of having each individual vision system establish its own

tunnel. This will result in fewer endpoints to manage, and each vision system does not need a

VPN client installed on the machine.

As seen in chapter 10, the system works well under testing conditions. The group managed to

fulfil most of the goals set for this system, however, because of time constraints and limited

resources, the system is still in need of improvements. A more automated, optimized, and ro-

bust system could be possible in the future.

14 References

88

14 References

[1] O. Kravchenko, M. Leshchenko, D. Marushchak, . Y. Vdovychenko and S.

Boguslavska, “The digitalization as a global trend and growth factor of the,” 2019.

[2] Digitalpool, “digitalpool.com,” 1 may 2022. [Online].

Available:https://digitalpool.com/.

[3] D. Abera. [Online].

Available:https://www.peerspot.com/products/microsoft-azure-devops-

reviews?fbclid=IwAR1axts3S0rFrcslHjAhfp04pch5G77sCmPbTj8ksiMhN3wA8l3UC

nJHUXI.

[4] Logitech, “logitech.com,” 1 January 2022. [Online].

Available:[1]https://resource.logitech.com/w_900,h_900,c_limit,q_auto,f_auto,dpr_1.0

/d_transparent.gif/content/dam/logitech/en/products/webcams/streamcam/gallery/strea

mcam-gallery-1-graphite.png?v=1.

[5] Logitech, “logitech.com,” Logitech, 1 January 2022. [Online].

Available:[2]https://cdn.cnetcontent.com/78/ad/78adbee3-e550-45bc-82f9-

6b75b3e4c3b7.jpg.

[6] Amazon, “amazon.com,” [Online].

Available:[1]https://m.media-

amazon.com/images/I/71YWwJGP86L._AC_SL1500_.jpg .

[7] Billiards Colostate, “billiards.colostate.edu,” [Online].

Available:https://billiards.colostate.edu/faq/table/sizes/.

[8] “The Matcha Initative,” [Online].

Available:https://www.thematchainitiative.com/find-a-solution/digital-footprint-it-

green-hardware-and-e-waste. [Accessed 19 05 2022].

[9] National Instruments, “NI.com,” [Online].

Available:https://www.ni.com/en-no/shop/data-acquisition-and-control/add-ons-for-

data-acquisition-and-control/what-is-vision-development-module/select-license.html#.

[Accessed 7 may 2022].

[10] OpenCV, “OpenCV.org,” [Online].

Available:https://docs.opencv.org/4.x/d1/dfb/intro.html. [Accessed 7 may 2022].

[11] Microsoft, “What is Computer Vision?,” [Online].

Available:https://docs.microsoft.com/en-us/azure/cognitive-services/computer-

vision/overview. [Accessed 7 may 2022].

14 References

89

[12] Microsoft, “What is Custom Vision?,” 3 Februray 2022. [Online].

Available:https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-

service/overview.

[13] D. D. W. H. T. Mathew Salvaris, Deep Learning with Azure, Apress, 2018.

[14] Custom vision, “Customvision.ai,” Azure, [Online].

Available:https://www.customvision.ai/projects/d2266057-b9f2-4d8e-a4a8-

14fe78ac2edc#/performance.

[15] Microsoft, “microsift.com,” 22 february 2022. [Online].

Available:https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-

service/select-domain. [Accessed 23 April 2022].

[16] Microsoft, “microsoft.com,” [Online].

Available:https://azure.microsoft.com/nb-no/pricing/details/cognitive-services/custom-

vision-service/#pricing. [Accessed 11 05 2022].

[17] O. D. Pedrayes , D. G. Lema, U. Rubén , D. F. García and A. Alonso, “Cost-Performance

Evaluation of a Recognition Service of Livestock Activity Using Aerial Images,” MDPI,

Spain, 2021.

[18] Microsoft, “Quickstart: Build an object detector with the Custom Vision website,” 11

april 2022. [Online].

Available:https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-

service/get-started-build-detector.

[19] RulesOfSport, “https://www.rulesofsport.com,” [Online].

Available:https://www.rulesofsport.com/sports/pool.html.

[20] “Piqsels,” [Online].

Available:https://www.piqsels.com/no/public-domain-photo-zyorh. [Accessed 01 04

2022].

[21] “Pixybay billiardtable 2d,” [Online].

Available:https://pixabay.com/no/vectors/basseng-biljardbord-biljard-snooker-

4873047/. [Accessed 02 02 2022].

[22] “OpenVPN Access Server system requirements,” 12 05 2022. [Online].

Available:https://openvpn.net/vpn-server-resources/openvpn-access-server-system-

requirements/.

[23] “Trust-tls-ssl-and-http,” medium, [Online].

Available:https://medium.com/mobile-development-group/trust-tls-ssl-and-https-

b925ac9d59. [Accessed 12 05 2022].

[24] “OpenVPN install script,” 04 05 2022. [Online].

Available:https://github.com/angristan/openvpn-install.

14 References

90

[25] C. Hagrupsen, S. Blomvågnes and A. Isak, “Github,” [Online].

Available:https://github.com/hagru/PoolBachelor/releases/tag/Alpha.

[26] R. Barone, “idtech,” 11 September 2020. [Online].

Available:idtech.

[27] S. Blomvågnes, “Webapplication repository,” 19 05 2022. [Online].

Available:https://github.com/SanderBlom/PoolFrontend.

Appendices

91

Appendices
Appendix A – Project description

Appendix B – Camera settings

Appendix C – Log of training sessions done to Custom Vision model

Appendix D – Vision system GUI user manual

Appendix E – Gantt diagram

Appendix F – Class diagram of the concrete classes

Appendix G – Adding a new vision system to web application guide

Appendix H – Flowcharts for the web application

Appendices

92

Appendix A

Bacheloroppgave

Title: Development of a camera-based system for 8-ball using Azure Custom Vision

USN veileder: Hans-Petter Halvorsen

Ekstern partner: Grenland Biljardklubb/Robert Immerstein

Bakgrunn:

Utvikling av kamerabasert system for biljard. Figure 1 viser et eksempel på en mulig imple-

mentasjon av et slikt system.

Figure 1: Systemoversikt

Prosjektbeskrivelse:

I dette prosjektet bør følgende aktiviteter utføres:

• Få en oversikt over visionsystemer
• Vision-programvare: Få en oversikt over tilgjengelige rammeverk, verktøy og program-

vare for utvikling av visionsystemer, f.eks. NI Vision Development Software for Lab-

VIEW og C# rammeverk. Andre alternativer kan være Python.
• Se på mulig maskinvare for et slikt visionsystem, som f.eks. PC, Raspberry Pi, NUC,

datamaskin, osv.
• Spesifikasjon og utvikling av en prototype for detektering av elementer (som f.eks. bal-

ler, farge, plassering, m.m.) innen biljard ved bruk av kamera.

Appendices

93

• Utvikling av applikasjoner for presentasjon av resultater.
• Vurdere ulike skytjenester og implementering ifm. dette, f.eks. Microsoft Azure platt-

formen.
• Vurder aspekter ifm datasikkerhet
• Vurder bruk av maskinlæring
• Testing av systemet

Studentkategori:

IA studenter

Praktisk informasjon:

Biljardbord, kamera, mm. er tilgjengelig for bruk i prosjektet.

Signatur:

Veileder (dato and signatur):

Studenter (dato and signatur):

Appendices

94

Appendix B

Camera settings
Applying custom camera settings was crucial to achieve a good result in the form of video and

pictures from the camera. Figure 0-1below shows the camera settings that worked best in our

test environment.

Figure 0-1: Camera settings menu and preferred values

Appendices

95

Appendix C

Log of training sessions done to Cus-
tom Vision model

Table 0-1 Training log

Training-type Date
Training-duration in

hours

Number of Training-im-

ages

Quick training 12.1.2022 0.2 20

Quick training 13.1.2022 0.32 43

Quick training 14.1.2022 0.34 47

Quick training 14.1.2022 0.39 62

Quick training 17.1.2022 0.45 83

Advanced

training
25.1.2022 2 88

Quick training 7.2.2022 0.49 98

Quick training 9.2.2022 1.25 176

Advanced train-

ing
24.2.2022 4 Hours 303

Quick training 7.4.2022 1.45 340

Appendices

96

Appendix D

Vision system GUI user manual
The following page will describe a short user manual. It is recommended that the user reads

through this manual before using the system.

• Upon opening the program, a start page will be displayed.

• From the start page, the user is advised to select the correct camera from the dropdown

menu.

• After selecting the camera, the user has three options:

o If a game is being set up in the webpage, simply wait for the system to start

automatically when the game is started from the webpage.

o If the user wants to start a quick game without connection to the webpage,

simply input the names desired, or leave them empty to automatically receive

the names “Player 1” and “Player 2”. Press “Start Quickgame” to launch the

game page

o If the user wants to get a feel for the system without necessarily being near a

camera or billiard table, the user can press “Start Simulation” to launch the

simulation mode.

• With the game page now open, see that the camera is looking okay, and that the whole

table is visible in the frame. If not, press “TAB” on the keyboard to open the camera

settings and adjust them to achieve the optimal result. (See Appendix B for camera

settings used in this project)

o If the camera freezes after adjusting the settings, try pressing “R” to refresh the

camera. If this does not work, try relaunching the application.

• With the camera ready, set the balls up in a triangle, and initialize the game by pressing

“SPACE” on the keyboard.

• The game is now ready and have started. After each shot, press “SPACE” to advance.

• Once the black ball is pocketed and a winner is declared, the system will wait a few

seconds before redirecting the user to the start page.

• Play again!

Appendices

97

Appendix E

Gantt diagram

Appendices

98

Appendix F

Class diagram of the concrete classes

Appendices

99

Appendix G

Adding a new vision system to web
application guide

1. Login to the server where the OpenVPN server is installed and run the openvpn-in-

stall.sh file. This can be done by typing “./openvpn-install.sh” as the root user.

2. Select the first option to create a new user, see Figure 0-2

Figure 0-2 VPN menu adding new user

3. Then input a new username and press enter. After this, select option 1 to create a user

without a password, see Figure 0-3

Figure 0-3 VPN menu select new username

4. Running the ls command will now show a new .ovpn file that contains all the neces-

sary information for a client to connect to the OpenVPN server.

5. Transfer the new file to the vison system (this can be done with the scp command).

6. Import the new file in the OpenVPN client by pressing the + icon and selecting the

.ovpn file. After importing the file, one should be able to connect to the server and

communicate with the web application and database.

Opening a terminal and typing ipconfig should display your IP address (10.8.0.x).

Take a note of this address because it is needed in the next step.

To test if the connection is established, one can try to ping the 10.8.0.1 address

(OpenVPN server). If a response is received, the communication is working.

Appendices

100

7. Log in with the administrator account on the web page and go to the admin panel. Un-

der the manage tables section one can type in the IP-address from step 6 and press the

“Add table” button. The new table should now be accessible to the users of the web

page. See Figure 0-4.

Figure 0-4 Table menu in the admin panel, in the web application

Appendices

101

Appendix H

Flowcharts for the web application

Flowchart register page

Appendices

102

Flowchart login page

Appendices

103

Flowchart game setup

Appendices

104

Flowchart tournament creation

Appendices

105

Flowchart for displaying old games

Appendices

106

Flowchart for viewing live games

